A new fish-based index of biotic integrity for lowland rivers in Flanders (Belgium)

Authors

  • Jan Breine Research Institute for Nature and Forest, Dwersbos 28, B-1630 Linkebeek
  • Ericia Van den Bergh Research Institute for Nature and Forest, Havenlaan 88 bus 73, B-1000 Brussel
  • Gerlinde Van Thyune Research Institute for Nature and Forest, Dwersbos 28, B-1630 Linkebeek
  • Claude Belpaire Research Institute for Nature and Forest, Dwersbos 28, B-1630 Linkebeek

DOI:

https://doi.org/10.26496/bjz.2021.89

Keywords:

multimetric fish-based index, fish reference list, functional guilds, lowland rivers, European Water Framework Directive

Abstract

The first fish-based index to assess the ecological quality of lowland rivers in Flanders (Belgium) is based on data obtained from different fishing techniques without considering the gear specificity. As a consequence, this index could not be intercalibrated with other European indices which concentrate on one gear type only. In order to comply with the European Water Framework Directive, we developed a new fish-based index using data obtained from surveys in rivers with electric gear only. All 293 selected rivers belonged to the bream or barbel zone. An updated reference list of fish species was compiled based on previous work and recent data. Abiotic data were collected according to standard methods and habitat quality of all surveyed sites was pre-classified using pressure indicators. To develop the new index candidate metrics were selected from the literature and metric values were calculated. Linear mixed regression models selected metrics based on their response to the pre-classified habitat status. Correlation tests were performed to avoid redundancy among responsive metrics. Boundaries for metric scores were defined based on the calculated metric values. The new index of biotic integrity (IBI) was calculated by summation of the metric scores, and transformed to an ecological quality ratio (EQR), ranging between 0 and 1. Five integrity classes, ranging from bad to maximal ecological potential, were attributed and compared to the pre-classified habitat status of the site. In addition, the new index was also validated with an independent set of data. The new IBI proved to successfully assess the ecological status of the rivers.

References

Adamczyk M., Prus P., Buras P., Wiśniewolski W., Ligięza J., Slakowski J., Borzęcka I. & Parasiewicz P. (2017). Development of a new tool for fish-based river ecological status assessment in Poland (EFI+IBI_PL). Acta Ichthyologica Piscatoria 47 (2): 173–184. https://doi.org/10.3750/AIEP/02001

Angermeier PL. & Davideanu G. (2004). Using fish communities to assess streams in Romania: Initial development of an index of biotic integrity. Hydrobiologia 511: 65–78. https://doi.org/10.1023/B:HYDR.0000014030.18386.65

Azimi S. & Rocher V. (2016). Influence of the water quality improvement on fish population in the Seine River (Paris, France) over the 1990–2013 period. Science of the Total Environment 542: 955–964. https://doi.org/10.1016/j.scitotenv.2015.10.094

Belpaire C., Smolders R., Vanden Auweele I., Ercken D., Breine J., Van Thuyne G. & Ollevier F. (2000). An Index of Biotic Integrity characterizing fish populations and the ecological quality of Flandrian water bodies. Hydrobiologia 434: 17–33. https://doi.org/10.1023/A:1004026121254

Borja A., Dauer D. & Gremare A. (2012). The importance of setting targets and reference conditions in assessing marine ecosystem quality. Ecological Indicators 12 (1): 1–7. https://doi.org/10.1016/j.ecolind.2011.06.018

Bozzetti M. & Schulz U.H. (2004). An index of biotic integrity based on fish assemblages for subtropical streams in southern Brazil. Hydrobiologia 529: 133–144. https://doi.org/10.1007/s10750-004-5738-6

Breine J., Simoens I., Goethals P., Quataert P., Ercken D., Van Liefferinghe C. & Belpaire C. (2004). A fish-based index of biotic integrity for upstream brooks in Flanders (Belgium). Hydrobiologia 522: 133–148. https://doi.org/10.1023/B:HYDR.0000029991.42922.a4

Breine J., Simoens I., Haidvogl G., Melcher A., Pont D. & Schmutz S. (2005). Manual for the Application of the European Fish Index – EFI. A Fish-Based Method to assess the Ecological Status of European Rivers in Support of the Water Framework Directive. Version 1.1, January 2005, 81 pp.

Breine J., Maes J., Quataert P., Van den Bergh E., Simoens I., Van Thuyne G. & Belpaire C. (2007). A fish-based assessment tool for the ecological quality of the brackish Schelde estuary in Flanders (Belgium). Hydrobiologia 575: 141–159. https://doi.org/10.1007/s10750-006-0357-z

Breine J., Quataert P., Stevens M., Ollevier F., Volckaert F., Van den Bergh E. & Maes J. (2010). A zone-specific fish-based index as a management tool for the Zeeschelde estuary (Belgium). Marine Pollution Bulletin 60 (7): 1099–1112. https://doi.org/10.1016/j.marpolbul.2010.01.014

Breine J., Stevens M., Van den Bergh E. & Maes J. (2011). A reference list of fish species for a heavily modified transitional water: The Zeeschelde (Belgium). Belgian Journal of Zoology 141 (1): 44–45.

Breine J., Van Thuyne G. & De Bruyn L. (2015). Development of a fish-based index combining data from different types of fishing gear. A case study of reservoirs in Flanders (Belgium). Belgian Journal of Zoology 145 (1): 17–39. https://doi.org/10.26496/bjz.2015.55

Brosens D., Breine J., Van Thuyne G., Belpaire C., Desmet P. & Verreycken H. (2015). VIS – A database on the distribution of fishes in inland and estuarine waters in Flanders, Belgium. ZooKeys. https://doi.org/10.3897/zookeys.475.8556

Casatti L. & Teresa F.B. (2012). A multimetric index based on fish fauna for the evaluation of the biotic integrity of streams at a mesohabitat scale. Acta Limnologica Brasiliensia 24 (4): 339–350. https://doi.org/10.1590/S2179-975X2013005000003

Casatti L., Ferreira C.P. & Langeani F. (2009). A fish-based biotic integrity index for assessment of lowland streams in southeastern Brazil. Hydrobiologia 623: 173–189. https://doi.org/10.1007/s10750-008-9656-x

CEN (2003). Water Quality - Sampling of Fish with Electricity. European Standard - EN 14011. European Committee for Standardization, Brussels 18 pp.

Chow-Fraser P., Kostuk K., Seilheimer T., Weimer M., MacDougall T. & Theÿsmeÿer T. (2006). Effect of wetland quality on sampling bias associated with two fish survey methods for coastal wetlands of the lower Great Lakes. In: Simon T.P. & Stewart P.M. (eds) Coastal Wetlands of the Laurentian Great Lakes: Health, Habitat and Indicators: 239–262. Indiana Biological Survey, Bloomington, Indiana.

Conino G., Benedito E., de Mello Cionek V., Ferreira M.T. & Oliveira J.M. (2020). A Fish-Based Index of Biotic Integrity for Neotropical Rainforest Sandy Soil Streams-Southern Brazil. Water 12: 1215. https://doi.org/10.3390/w12041215

Degerman E., Beier U., Breine J., Melcher A., Quataert P., Rogers C., Roset N. & Simoens I. (2007). Classification and assessment of degradation in European running waters. Fisheries Management and Ecology 14 (6): 417–426. https://doi.org/10.1111/j.1365-2400.2007.00578.x

Dézerald O., Mondy C.P., Dembski S., Kreutzenberger K., Reyjole Y., Chandesris A., Valette L., Brosse S., Toussaint A., Belliard J., Merg M-L. & Usseglio-Polatera P. (2020). A diagnosis-based approach to assess specific risks of river degradation in a multiple pressure context: Insights from fish communities. Science of the Total Environment 734: 139467. https://doi.org/10.1016/j.scitotenv.2020.139467

Drouineau H., Carter C., Rambonilaza M., Beaufaron G., Bouleau G., Gassiat A., Lambert P., le Floch S., Tétard S. & de Oliveira E. (2018). River Continuity Restoration and diadromous fishes: much more than an ecological issue. Environmental Management 61 (4): 671–686. https://doi.org/10.1007/s00267-017-0992-3

Einheuser M.D., Nejadhashemi A.P., Wang L., Sowa S.P. & Woznicki S.A. (2013). Linking biological integrity and watershed models to assess the impacts of historical land use and climate changes on stream health. Environmental Management 51 (6): 1147–1163. https://doi.org/10.1007/s00267-013-0043-7

Ergönül M.B., Breine J. & Van den Bergh E. (2018). A technical guide to develop a statistically valid fish-based index in compliance with the Water Framework Directive: An evaluation for Turkish freshwaters. International Aquatic Research 10 (4): 303–319. https://doi.org/10.1007/s40071-018-0209-2

Ergönül M.B., Breine J., Van den Bergh E. & Bahçeci H. (2019). Biological assessment of some wadable rivers in Turkey using fish data: a statistical approach. Environment, Development and Sustainability 22: 7385–7425. https://doi.org/10.1007/s10668-019-00526-x

EU Water Framework Directive (2000). Directive of the European parliament and of the council 2000/60/EC establishing a framework for community action in the field of water policy. Official Journal of the European Communities 22.12.2000 L 327/1.

Falcone J.A., Carlisle D.M. & Weber L.C. (2010). Quantifying human disturbance in watersheds, variable selection and performance of a GIS-based disturbance index for predicting the biological condition of perennial streams. Ecological Indicators 10 (2): 264–273. https://doi.org/10.1016/j.ecolind.2009.05.005

Fausch K.D., Lyons J., Karr J.R. & Angermeier P.L. (1990). Fish communities as indicators of environmental degradation. American Fisheries Society Symposium 8 (1): 123–144.

Freund J.G. & Petty J.T. (2007). Response of fish and macroinvertebrate bioassessment indices to water chemistry in a mined Appalachian watershed. Environmental Management 39 (5): 707–720. https://doi.org/10.1007/s00267-005-0116-3

Goffaux D., Roset N., Breine J.J., de Leeuw J.J., Oberdorff T. & Kestemont P. (2001). A Biotic Index of Fish Integrity (IBIP) to Evaluate the Ecological Quality of Lotic Ecosystems – Application to the Meuse River Basin. Final Report:Life 97/ ENV/B/000419: 171 pp.

Han J.-H., An S.-L. & An K-G. (2019). Application of different fish sampling gear in Korean reservoirs and the analysis of sampling efficiencies. Journal of Asia-Pacific Biodiversity 12: 528–540. https://doi.org/10.1016/j.japb.2019.10.002

Hering D., Feld C.K., Moog O. & Ofenböck T. (2006). Cook book for the development of a Multimetric Index for biological condition of aquatic ecosystems: experiences from the European AQEM and STAR projects and related initiatives. Hydrobiologia 566: 311–324. Available from http://geoloket.vmm.be/Geoviews/ and http://vis.inbo.be [accessed 20 September 2021]. https://doi.org/10.1007/s10750-006-0087-2

Huet M. (1949). Aperçu des relations entre la pente et les populations piscicoles des eaux courantes. Revue suisse d’Hydrologie Vol XI (3–4): 332–351.

Huet M. (1950). Aperçu limnologique des eaux douces de Belgique. Limnologische overzicht der zoete waters in België. Ministerie van landbouw Bestuur van Waters en Bossen. Werken D(12): 55 pp.

Huet M. (1962). Influence du courant sur la distribution des poissons dans les eaux courantes. Revue suisse d’Hydrologie 24: 412–432. https://doi.org/10.1007/BF02503050

Jepsen N. & Pont D. (2007). Intercalibration off Fish-Based Methods to Evaluate River Ecological Quality. Report from an EU intercalibration pilot exercise EUR 22878 EN – 2007. 197pp. https://doi.org/10.13140/RG.2.1.5148.5608

Jurvelius J., Kolari I. & Leskalä A. (2011). Quality and status of fish stocks in lakes: gillnetting, seining, trawling and hydroacoustics as sampling methods. Hydrobiologia 660: 29–36. https://doi.org/10.1007/s10750-010-0385-6

Karr J.R. (1981). Assessment of biotic integrity using fish communities. Fisheries 6 (6): 21–27. https://doi.org/b433bz

Kennard M.J., Harch B.D., Pusey B.J. & Arthington A.H. (2006). Accurately defining the reference condition for summary biotic metrics: a comparison of four approaches. Hydrobiologia 572: 151–170. https://doi.org/10.1007/s10750-005-0998-3

Kesminas V. & Virbickas T. (2000). Application of an adapted index of biotic integrity to rivers of Lithuania. Hydrobiologia 422: 257–270. https://doi.org/10.1023/A1017049728142

Kestemont P., Didier J., Depiereux E. & Micha J.C. (2000). Selecting ichthyological metrics to assess river basin ecological quality. Archiv für Hydrobiologie Supplement 121(3–4): 321–348.

Kruk A. (2007). Role of habitat degradation in determining fish distribution and abundance along the lowland Warta River, Poland. Journal of Applied Ichthyology 23 (1): 9–18. https://doi.org/10.1111/j.1439-0426.2006.00784.x

Laponte N.W.R., Corkum L.D. & Mandrak N. (2006). A comparison of methods for sampling fish diversity in shallow offshore waters of large rivers. North American Journal of Fisheries Management 26 (3): 503–513. https://doi.org/10.1577/M05-091.1

Latli A., Descy J-P., Mondy C.P., Floury M., Viroux L., Otjacques W., Marescaux J., Depiereux E., Ovidio M., Usseglio-Polatera P. & Kestemont P. (2017). Long-term trends in trait structure of riverine communities facing predation risk increase and trophic resource decline. Ecological Applications 27 (8): 2458–2474. https://doi.org/10.1002/eap.1621

Launois L., Veslot J., Irz P. & Argillier C. (2011). Selecting fish-based metrics responding to human pressures in French natural lakes and reservoirs: towards the development of a fish-based index (FBI) for French lakes. Ecology of Freshwater Fish 20 (1):120–132. https://doi.org/10.1111/j.1600-0633.2010.00467.x

Li T., Huang X., Jiang X. & Wang X. (2018). Assessment of ecosystem health of the Yellow River with fish index of biotic integrity. Hydrobiologia 814: 31–43. https://doi.org/10.1007/s10750-015-2541-5

Logez M. & Pont D. (2011). Development of metrics based on fish body size and species traits to assess European coldwater streams. Ecological Indicators 11: 1204–1215. https://doi.org/10.1016/j.ecolind.2010.12.023

Magurran A.E. (2004). Measuring Biological Diversity. Blackwell Publishing company, Hoboken. 256 pp.

Minier C., Amara R. & Lepage M. (2015). Fish as reference species in different water masses. In: Amiard-Triquet C., Amiard J.C. & Mouneyrac C. (eds) Aquatic Ecotoxicology: Advancing Tools for Dealing with Emerging Risks: 309–331. Academic Press, London. https://doi.org/10.1016/B978-0-12-800949-9.00013-9

Mostafavi H., Schinegger R., Melcher A., Moder K., Mielach C. & Schmutz S. (2015). A new fish-based multi-metric assessment index for cyprinid streams in the Iranian Caspian Sea Basin. Limnologica 51: 37–52. https://doi.org/10.1016/j.limno.2014.10.006

Mostafavi H., Teimori A., Schinegger R. & Schmutz S. (2019). A new fish based multi-metric assessment index for cold-water streams of the southern Caspian Sea Basin in Iran. Environmental Biology of Fishes 102: 645–662. https://doi.org/10.1007/s10641-019-00860-z

Murphy C.A., Casals F., Solà C., Caiola N., de Sostoa A. & García-Berthou E. (2013). Efficacy of population size structure as a bioassessment tool in freshwaters. Ecological Indicators 34: 571–579. https://doi.org/10.1016/j.ecolind.2013.06.007

Nakagawa S. & Schielzeth H. (2013). A general and simple method for obtaining R² from generalized linear mixed-effects models. Methods in Ecology and Evolution 4:133–142. https://doi.org/10.1111/j.2041-210x.2012.00261.x

Noble R.A.A., Cowx I.G., Goffaux D. & Kestemont P. (2007). Assessing the health of European rivers using functional ecological guilds of fish communities. standardizing species classification and approaches to metric selection. Fisheries Management and Ecology 14 (6): 381–392. https://doi.org/10.1111/j.1365-2400.2007.00575.x

Oberdorff T., Pont D., Hugueny B. & Porcher J.P. (2002). Development and validation of a fish-based index for the assessment of ‘river health’ in France. Freshwater Biology 47 (9): 1720–1734. https://doi.org/10.1046/j.1365-2427.2002.00884.x

Paganelli D., Forni G., Marchini A., Mazziotti C. & Occhipinti-Ambrogi A. (2011). Critical appraisal on the identification of Reference Conditions for the evaluation of ecological quality status along the Emilia- Romagna coast (Italy) using M-AMBI. Marine Pollution Bulletin 62 (8): 1725–1735. https://doi.org/10.1016/j.marpolbul.2011.05.027

Pardo I., Gómez-Rodríguez C., Wasson J-G., Owen R., van de Bund W., Kelly M., Bennett C., Birk S., Buffagni A., Erba S., Mengin N., Murray-Bligh J. & Ofenböeck G. (2012). The European reference condition concept: A scientific and technical approach to identify minimally-impacted river ecosystems. Science of the Total Environment 42: 33–42. https://doi.org/10.1016/j.scitotenv.2012.01.026

Pasquaud, S., Brind’Amour A., Berthelé O., Girardin M., Elie P., Boët P. & Lepage M. (2012). Impact of the sampling protocol in assessing ecological trends in an estuarine ecosystem: The empirical example of the Gironde estuary. Ecological Indicators 15: 18–29. https://doi.org/10.1016/j.ecolind.2011.09.017

Pont D., Hugueny B., Beier U., Goffaux D., Melcher A., Noble R., Rogers C., Roset N. & Schmutz S. (2006). Assessing river biotic condition at a continental scale: a European approach using functional metrics and fish assemblages. Journal of Applied Ecology 43 (1): 70–80. https://doi.org/10.1111/j.1365-2664.2005.01126.x

Pont D., Hugueny B. & Rogers C. (2007). Development of a fish-based index for the assessment of river health in Europe, the European Fish Index. Fisheries Management and Ecology 14 (6). 427–439. https://doi.org/10.1111/j.1365-2400.2007.00577.x

Quataert P., Breine J. & Simoens I. (2007). Evaluation of the European Fish Index: false-positive and false-negative error rate to detect disturbance and its consistency with alternative fish indices. Fisheries Management and Ecology 14 (6): 465–472. https://doi.org/10.1111/j.1365-2400.2007.00573.x

Quataert P., Verschelde P., Breine J., Verbeke G., Goetghebeur E. & Ollevier F. (2011). A diagnostic modelling framework to construct indices of biotic integrity: A case study of fish in the Zeeschelde estuary (Belgium). Estuarine. Coastal and Shelf Science 94 (3): 222–233. https://doi.org/10.1016/j.ecss.2011.06.014

Radinger J., Höller F., Horký P., Slavík O. & Wolter C. (2018). Improved river continuity facilitates fishes’ abilities to track future environmental changes. Journal of Environmental Management 208: 169–179. https://doi.org/10.1016/j.jenvman.2017.12.011

R Core Team. (2020). R: A Language and Environment for Statistical Computing. Foundation for Statistical Computing, Vienna. Available from https://www.R-project.org [accessed 20 September 2021].

Saç G., Gaygusuz Ö., Dorak Z., Köker L., Aydin F., Akçaalan R. & Albay M. (2021). Pressure of Urbanisation on the Fish Community Structure in Küçük Menderes River Basin (Turkey). Turkish Journal of Water Science & Management 5 (1): 43–62. https://doi.org/10.31807/tjwsm.764873

Sapounidis A.S., Koutrakis E.T. & Leonardos I.D. (2019). Fish-based River Integrity Index: A first attempt in developing a water quality index for the assessment of the Greek rivers. Ecology & Hydrobiology 19 (4): 620–628. https://doi.org/10.1016/j.ecohyd.2017.11.004

Schinegger R., Pucher M., Aschauer C. & Schmutz S. (2018). Configuration of multiple human stressors and their impacts on fish assemblages in Alpine river basins of Austria. Science of the Total Environment 616–617: 17–28. https://doi.org/10.1016/j.scitotenv.2017.10.283

Schlaepfer M.A. (2018) Do non-native species contribute to biodiversity? PLOS Biology 16 (4): e2005568. https://doi.org/10.1371/journal.pbio.2005568

Tabachnick B.G. & Fidell L.S. (1996). Using Multivariate Statistics (3rd Ed.). Harper Collins Publishers, New York. 880 pp.

Townsend C.R. & Hildrew A.G. (1994). Species traits in relation to a habitat templet for river systems. Freshwater Biology 31 (3): 265–275. https://doi.org/10.1111/j.1365-2427.1994.tb01740.x

Tweedley J.R., Warwick R.M., Hallett C.S. & Potter I.C. (2017). Fish-based indicators of estuarine condition that do not require reference data. Estuarine, Coastal and Shelf Science 191: 209–220. https://doi.org/10.1016/j.ecss.2017.04.015

Vandelannoote A., Yseboodt R., Bruylants B., Verheyen R., Belpaire C., Van Thuyne G., Denayer B., Beyens J., De Charleroy D., Coeck J., Maes J. & Vandenabeele P. (1998). Atlas van de Vlaamse beek- en riviervissen. Water Energik Vlario, Wijnegem. 303 pp.

Van Liefferinghe C., Simoens I., Vogt C., Cox T.J.S., Breine J., Ercken D., Goethals P., Belpaire C. & Meire P. (2010). Impact of habitat diversity on the sampling effort required for the assessment of river fish communities and IBI. Hydrobiologia 644: 169–183. https://doi.org/10.1007/s10750-010-0110-5

Van Thuyne G., Breine J., Verreycken H., De Boeck T., Brosens D. & Desmet P. (2020a). VIS – Fishes in inland waters in Flanders, Belgium. Version 9.5. Research Institute for Nature and Forest (INBO). Occurrence dataset available from https://doi.org/10.15468/gzyxyd [accessed 20 September 2021].

Van Thuyne G., Verschelde P., Westra T. & Breine J. (2020b). Ecologische toestand van de Vlaamse waterlopen voor het kwaliteitselement vis in de periode 2013–2018. Rapporten van het Instituut voor Natuur en Bosonderzoek. 53 pp. With English abstract.

Vehanen T., Sutela T. & Korhonen H. (2010). Environmental assessment of boreal rivers using fish data – a contribution to the Water Framework Directive. Fisheries Management and Ecology 17 (2): 165–175. https://doi.org/10.1111/j.1365-2400.2009.00716.x

Verreycken H., Anseeuw D., Van Thuyne G., Quataert P. & Belpaire C. (2007). The nonindigenous freshwater fishes of Flanders (Belgium): review, status and trends over the last decade. Journal of Fish Biology 71 (Supplement D): 160–172. https://doi.org/10.1111/j.1095-8649.2007.01679.x

Verreycken H., Belpaire C., Van Thuyne G., Breine J., Buysse D., Coeck J., Mouton H., Van Den Neucker T., De Bruyn L. & Maes D. (2014). IUCN Red List of freshwater fishes and lampreys in Flanders (North Belgium). Fisheries Management and Ecology 21 (2): 122–132.

https://doi.org/10.1111/fme.12052

Vlarem II (2010. Belgisch Staatsblad N.209 180e jaargang 9 juli 2010 (45463) wat betreft de milieukwaliteitsnormen voor oppervlaktewateren, waterbodems en grondwater.

Walberg E. (2011). Effect of increased water temperature on warm water fish feeding behavior and habitat use. Journal of Undergraduate Research at Minnesota State University, Mankato 11 (13): 1–14. Available from https://cornerstone.lib.mnsu.edu/jur/vol11/iss1/13 [accessed 20 September 2021].

Webb B.W. & Walsh A.J. (2004). Changing UK river temperatures and their impact on fish populations. Hydrology, Science & Practise for the 21st Century 2: 117–191. Available from http://hdl.handle.net/10036/41373 [accessed 20 September 2021].

Wu W., Xu Z., Yin X. & Zuo D. (2014). Assessment of ecosystem health based on fish assemblages in the Wei River basin. China. Environmental Monitoring and Assessment 186 (6): 3701–3716. https://doi.org/10.1007/s10661-014-3651-7

Yan Y., Wang H., Zhu R., Chu L. & Chen Y. (2013). Influences of low-head dams on the fish assemblages in the headwater streams of the Qingyi watershed, China. Environmental Biology of Fishes 96 (4): 495–506. https://doi.org/10.1007/s10641-012-0035-0

Yerli S.V., Kormaz M. & Mangıt F. (2016). Biological assessment by a fish-based index of biotic integrity for Turkish inland waters. In: Taylor W.D., Bartley M., Goddard C.I., Leonard N.J. & Welcomme R. (eds) Freshwater, Fish and the Future Proceedings of the Global Cross-Sectoral Conference: 91–97. Food and Agriculture Organization of the United Nations. Rome; Michigan State University, East Lansing; and American Fisheries Society, Bethesda. Maryland.

Zimmerman J.K.H., Vondracek B. & Westra J. (2003). Agricultural Land Use Effects on Sediment Loading and Fish Assemblages in Two Minnesota (USA) Watersheds. Environmental Management 32 (1): 93–105. https://doi.org/10.1007/s00267-003-2989-3

Zuur A., Ieno E.N., Walker N., Saveliev A.A. & Smith G.M. (2009). Mixed Effects Models and Extensions in Ecology with R. Springer, New York. 578 pp.

Downloads

Published

2021-11-25

How to Cite

Breine, J., Van den Bergh, E., Van Thyune, G., & Belpaire, C. (2021). A new fish-based index of biotic integrity for lowland rivers in Flanders (Belgium). Belgian Journal of Zoology, 151. https://doi.org/10.26496/bjz.2021.89

Issue

Section

Articles