The influence of habitat on metabolic and digestive parameters in an intertidal crab from a SW Atlantic coastal lagoon

Authors

  • Eugenia Méndez Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Mar del Plata, Funes 3250 (7600) Mar del Plata
  • M. Soledad Michiels Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Mar del Plata, Funes 3250 (7600) Mar del Plata
  • Alejandra A. López-Mañanes Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Mar del Plata, Funes 3250 (7600) Mar del Plata

DOI:

https://doi.org/10.26496/bjz.2021.87

Keywords:

intertidal crabs, hepatopancreas, energy reserves, lipase, alkaline phosphatase

Abstract

The hepatopancreas of decapod crustaceans is an organ which can act as indicator for digestive and metabolic parameters under different physiological and / or environmental conditions. However, biochemical studies on digestive and metabolic parameters of the hepatopancreas of euryhaline burrowing crabs such as Neohelice granulata from habitats with different diet compositions are still scarce. In the wild, adult males of N. granulata from Mar Chiquita Coastal Lagoon (Argentina) in mudflat habitat have diets with higher lipid and protein content than crabs from the saltmarsh, suggesting that diets could be an important factor influencing hepatopancreas activities. We tested this hypothesis here by exposing adult male crabs to a similar experimental diet and comparing hepatopancreas parameters for lipid components and protein metabolism between males from these two habitat types at different times (up to three months). At month 3, we noticed a decrease of the triglyceride concentration and lipase activity and an increase of protein concentration in crabs from the mudflat. In contrast, triglycerides and protein concentration did not change in crabs from the saltmarsh, while lipase activity decreased and levamisole insensitive AP increased at month 3. The results indicate that digestive and metabolic parameters in the hepatopancreas of crabs from habitats varying in diet content remain different, even if crabs are subsequently fed by a similar experimental diet. This suggests that specific intrinsic regulations of these hepatopancreas parameters could operate differently in each habitat and could not be changed by recent diet conditions.

References

Albanesi C., González-Castro M. & López-Mañanes A. (2020). Understanding the early ontogenetic stages of Mugil liza (Mugilidae): Morphological traits and digestive / metabolic profile of pre-juveniles after recruitment. Journal of Fish Biology 98 (3): 643–654. https://doi.org/10.1111/jfb.14605

Angeletti S. & Cervellini P.M. (2015). Population structure of the burrowing crab Neohelice granulata (Brachyura, Varunidae) in a SW Atlantic salt marsh. Latin American Journal of Aquatic Research 43: 539–547.

Bas C., Lancia J.P., Luppi T., Méndez-Csariego A., Kittlein M. & Spivak E. (2014). Influence of tidal regime, diurnal phase, habitat and season on feeding of an intertidal crab. Marine Ecology 35: 319–331. https://doi.org/10.1111/maec.12083

Belgrad B.A. & Griffen B.D. (2016). The influence of diet composition on fitness of the blue crab, Callinectes sapidus. PloS ONE 11: e0145481. https://doi.org/10.1371/journal.pone.0145481

Bradford M.M. (1976). A rapid and sensitive metod for the quantitation of microgram quantities of protein-dye binding. Analytical Biochemistry 72: 248–254. https://doi.org/10.1016/0003-2697(76)90527-3

Carter C. & Mente E. (2014). Protein synthesis in crustaceans: a review focused on feeding and nutrition. Open Life Sciences 9 (1): 1–10. https://doi.org/10.2478/s11535-013-0134-0

Chan J.R. & Stinson R.A. (1986). Dephosphorylation of phosphoproteins of human liver plasma membranes by endogenous and purified liver alkaline phosphatases. Journal of Biological Chemistry 261: 7635–7639.

da Silva Vianna B., Miyai C.A., Augusto A. & Costa T.M. (2020). Effects of temperature increase on the physiology and behavior of fiddler crabs. Physiology & Behavior 215: 112765. https://doi.org/10.1016/j.physbeh.2019.112765

del Valle J.C. & López Mañanes A.A. (2011). Digestive flexibility in females of the subterranean rodent Ctenomys talarum in their natural habitat. Journal of Experimental Zoology 315A: 141–148. https://doi.org/10.1002/jez.658

del Valle J.C. & López Mañanes A.A. (2012). Fisiología integrativa y adaptativa de roedores subterráneos Ctenomys talarum: Modelo de estudio de cambios plásticos frente a variaciones del ambiente y de demanda energética. Editorial Académica Española. LAP Lambert Academic Publishing GmbH&Co.

Díez-Zaera M., Díaz-Hernández J.I., Hernández-Álvarez E., Zimmermann H., Díaz-Hernández M. & Miras-Portugal M.T. (2011). Tissue-nonspecific alkaline phosphatase promotes axonal growth of hippocampal neurons. Molecular Biology of the Cell 22: 1014–1024. https://doi.org/10.1091/mbc.e10-09-0740

Karasov H.W. & Douglas A.E. (2013). Comparative digestive physiology. Comprehensive Physiology 3: 741–783. https://doi.org/10.1002/cphy.c110054

Lallès J.P. (2019). Recent advances in intestinal alkaline phosphatase, inflammation, and nutrition. Nutrition Reviews 77 (10): 710–724. https://doi.org/10.1093/nutrit/nuz015

Lancia J.P., Bas C. & Spivak E. (2014). Food manipulation and selection in the omnivorous grapsoid crab Neohelice granulata (Decapoda: Varunidae). Scientia Marina 78: 529–536. https://doi.org/10.3989/scimar.04036.02B

Leão T., Siqueira M., Marcondes S., Franco-Belussi L., De Oliveira C. & Fernandes, C.E. (2021). Comparative liver morphology associated with the hepatosomatic index in five Neotropical anuran species. The Anatomical Record 304 (4): 860–871. https://doi.org/10.1002/ar.24540

Ljungström M., Norberg L., Olaisson H., Wernstedt C., Vega F.V., Arvidson G. & Mårdh S. (1984). Characterization of proton-transporting membranes from resting pig gastric mucosa. Biochimica et Biophysica Acta 769: 209–219. https://doi.org/10.1016/0005-2736(84)90025-7

Lopez Mañanes A.A., Asaro A., Méndez E., Michiels M.S. & Pinoni S.A. (2020). Digestive flexibility in Neohelice granulata from the Mar Chiquita Coastal Lagoon: characterization and modulation of key enzymes in hepatopancreas. In: Rodríguez E.M. & Luppi T.A. (eds) Neohelice granulata, a Model Species for Studies on Crustaceans. Volume II: Anatomy and Physiology: 255–274. Cambridge Scholars Publishing.

Luppi T., Bas C., Méndez Casariego A., Albano M., Lancia J., Kittlein M., Rosenthal A., Farías N., Spivak E. & Iribarne O. (2013). The influence of habitat, season and tidal regime in the activity of the intertidal crab Neohelice (= Chasmagnathus) granulata. Helgoland Marine Research 67: 1–15. https://doi.org/10.1007/s10152-012-0300-9

Markweg H., Lang M.S. & Wagner F. (1995). Dodecanoic acid inhibition of lipase from Acetino-bacter sp. OPA 55. Enzyme and Microbial Technology 17: 512–516. https://doi.org/10.1016/0141-0229(94)00067-2

McGaw I.J. & Curtis D.L. (2013). A review of gastric processing in decapod crustaceans. Journal of Comparative Physiology B 183 (4): 443–465. https://doi.org/10.1007/s00360-012-0730-3

Melo J.F.B., Lundstedt L.M., Moraes G. & Inoue L.A.K.A. (2012). Effect of different concentrations of protein on the digestive system of juvenile silver catfish. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 64: 450–457. https://doi.org/10.1590/S0102-09352012000200027

Méndez E., López Mañanes A.A. & Pinoni S.A. (2019). Feeding and osmoregulation in the euryhaline crab Neohelice granulata: digestive parameter responses. Animal Biology 69: 433–449. https://doi.org/10.1163/15707563-20191037

Michiels M.S., del Valle J.C. & López Mañanes A.A. (2013). Effect of environmental salinity and dopamine injections on key digestive enzymes in hepatopancreas of the euryhaline crab Cyrtograsus angulatus (Decapoda: Brachyura: Varunidae). Scientia Marina 77: 129–136. https://doi.org/10.3989/scimar.03687.09D

Michiels M.S., del Valle J.C. & López Mañanes A.A. (2015a). Lipase activity sensitive to dopamine, glucagon and cyclic AMP in hepatopancreas of the euryhaline burrowing crab Neohelice granulata. Crustaceana 88: 51–65. https://doi.org/10.1163/15685403-00003399

Michiels M.S., del Valle J.C. & López Mañanes A.A. (2015b). Biochemical characteristics and modulation by external and internal factors of aminopeptidase-N activity in the hepatopancreas of a euryhaline burrowing crab. Journal of Comparative Physiology B 185: 501–510. https://doi.org/10.1007/s00360-015-0899-3

Michiels M.S., del Valle J.C. & López Mañanes A.A. (2017). Trypsin and N-aminopeptidase (APN) activities in the hepatopancreas of an intertidal euryhaline crab: Biochemical characteristics and differential modulation by histamine and salinity. Comparative Biochemistry and Physiology Part A 204: 228–235. https://doi.org/10.1016/j.cbpa.2016.12.003

Michiels M.S., Daleo G.R. & López Mañanes A.A. (2020). Differential modulation after feeding in different salinities and response to abscisic acid (ABA) and extracellular Ca2+ of aminopeptidase N (APN) activity in the hepatopancreas of the intertidal euryhaline crab Neohelice granulata. Canadian Journal of Zoology 98: 262–268. https://doi.org/10.1139/cjz-2019-0163

Mota A., Silva P., Neves D., Lemos C., Calhau C., Torres D., Martel F., Fraga H., Ribeiro L., Alçada M.N.M.P., Pinho M.J., Negrão M.R., Pedrosa R., Guerreiro S., Guimarães J.T., Azevedo I. & Martins M.J. (2008). Characterization of rat heart alkaline phosphatase isoenzymes and modulation of activity. Brazilian Journal of Medical and Biological Research 41: 600–609. https://doi.org/10.1590/S0100-879X2008000700009

Mueller S.N. (2017). Grand challenges in immunological memory. Frontiers in Immunology 8: 385. https://doi.org/10.3389/fimmu.2017.00385

Nuñez J., Ribeiro P. & Luppi T. (2020). Biogeography and habitat use. In: Luppi T.A. & Rodríguez E.M (eds) Neohelice granulata, a Model Species for Studies on Crustaceans. Volume I, Life History and Ecology: 291–318. Cambridge Scholars Publishing.

Pinoni S.A. (2009). Maintenance Mechanisms of the Internal Medium in Response to Environmental Stress in Decapod Crustaceans of Regional Interest Ph.D. Thesis, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina.

Pinoni S.A. & López Mañanes A.A. (2008). Partial characterization and response under hyperregulating conditions of Na+/K+-ATPase and levamisole-sensitive alkaline phosphatase activities in chela muscle of the euryhaline crab Cyrtograpsus angulatus. Scientia Marina 72: 15–24. https://doi.org/10.3989/scimar.2008.72n115

Pinoni S.A. & López Mañanes A.A. (2016). Digestive flexibility in the euryhaline crab Cyrtograpsus angulatus (Decapoda, Brachyura, Varunidae) from Mar Chiquita coastal lagoon (Buenos Aires, Argentina): responses to salinity of key enzymes in hepatopancreas. Pan-American Journal of Aquatic Sciences 11: 345–355.

Pinoni S.A., Goldemberg A.L. & López Mañanes A.A. (2005). Alkaline phosphatase activities in muscle of the euryhaline crab Chasmagnathus granulatus: response to environmental salinity. Journal of Experimental Marine Biology and Ecology 326: 217–226. https://doi.org/10.1016/j.jembe.2005.06.004

Pinoni S.A., Iribarne O. & López Mañanes A.A. (2011). Between-habitat comparison of digestive enzymes activities and energy reserves in the SW Atlantic euryhaline burrowing crab Neohelice granulata. Comparative Biochemistry and Physiology Part A 158 (4): 552–559. https://doi.org/10.1016/j.cbpa.2010.12.020

Pinoni S.A., Michiels M.S. & López Mañanes A.A. (2013). Phenotypic flexibility in response to environmental salinity in the euryhaline crab Neohelice granulata from the mudflat and the saltmarsh of a SW coastal lagoon. Marine Biology 160: 2647–2661. https://doi.org/10.1007/s00227-013-2258-9

Pinoni S.A., Méndez E. & López Mañanes A.A. (2015). Digestive flexibility in a euryhaline crab from a SW Atlantic coastal lagoon: alkaline phosphatase activity sensitive to salinity in the hepatopancreas. Journal of the Marine Biological Association of the United Kingdom 95: 1133–1140. https://doi.org/10.1017/S0025315415000570

Pinoni S.A., Jerez-Cepa I., López Mañanes A.A. & Mancera Romero J.M. (2018). The euryhaline crab Uca tangeri showed metabolic differences to sex and environmental salinity. Journal of the Marine Biological Association of the United Kingdom 98: 1465–1475. https://doi.org/10.1017/S0025315417000601

Romano N. & Zeng C. (2012). Osmoregulation in decapod crustaceans: implications to aquaculture productivity, methods for potential improvement and interactions with elevated ammonia exposure. Aquaculture 334: 12–23. https://doi.org/10.1016/j.aquaculture.2011.12.035

Saborowski R. (2015). Nutrition and digestion. In: Chang E.S. & Thiel M. (eds) The Natural History of the Crustacea. Physiology 4: 285–319. Oxford University Press, New York.

Spivak E. (2020). The Southwestern Atlantic intertidal crab Neohelice granulata: history of a successful animal model for scientific research, from XIX century naturalists to XXI century laboratories. In: Luppi T.A. & Rodríguez E.M. (eds) Neohelice granulata, a Model Species for Studies on Crustaceans. Volume I, Life History and Ecology: 5–22. Cambridge Scholars Publishing.

Štrus J., Žnidaršič N., Mrak P., Bogataj U. & Vogt G. (2019). Structure, function and development of the digestive system in malacostracan crustaceans and adaptation to different lifestyles. Cell and Tissue Research 377: 415–443. https://doi.org/10.1007/s00441-019-03056-0

Sun S., Wang N. & Zhu M. (2021). Salinity acclimation alters acid and alkaline phosphatase expression and histological changes in the hepatopancreas of the oriental river prawn Macrobrachium nipponense (De Haan, 1849) (Decapoda: Caridea: Palaemonidae). The Journal of Crustacean Biology 41 (1): ruaa087. https://doi.org/10.1093/jcbiol/ruaa087

Verri T., Mandal A., Zilli L., Bossa D., Mandal P.K., Ingrosso L., Zonno V., Viella S., Aheam G.A. & Storelli C. (2001). d-Glucose transport in decapod crustacean hepatopancreas. Comparative Biochemistry and Physiology. Part A 130: 585–606. https://doi.org/10.1016/S1095-6433(01)00434-2

Vogt G. (2019). Functional cytology of the hepatopancreas of decapod crustaceans. Journal of morphology 280: 1405–1444. https://doi.org/10.1002/jmor.21040

Wang Z.J., Lee J., Sia Y.X., Wanga W., Yang J.M., Yina S.J., Qiana G.Y. & Park Y.D. (2014). A folding study of Antarctic krill (Euphausia superba) alkaline phosphatase using denaturants. Interna-tional Journal of Biological Macromolecules 70: 266–274. https://doi.org/10.1016/j.ijbiomac.2014.07.001

Xie D., Yang L., Yu R., Chen F., Lu R., Qin C. & Nie G. (2017). Effects of dietary carbohydrate and lipid levels on growth and hepatic lipid deposition of juvenile tilapia, Oreochromis niloticus. Aquaculture, 479: 696–703. https://doi.org/10.1016/j.aquaculture.2017.07.013

Zar J.H. (1999). Biostatistical Analysis. Prentice Hall, Upper Saddle River, New Jersey.

Downloads

Published

2021-09-13

How to Cite

Méndez, E., Michiels, M. S., & López-Mañanes, A. A. (2021). The influence of habitat on metabolic and digestive parameters in an intertidal crab from a SW Atlantic coastal lagoon. Belgian Journal of Zoology, 151. https://doi.org/10.26496/bjz.2021.87

Issue

Section

Articles