Do substrate roughness and gap distance impact gap-bridging strategies in arboreal chameleons?

Authors

  • Allison Luger Ghent University, Evolutionary Morphology of Vertebrates, K.L. Ledeganckstraat 35, 9000 Ghent
  • Vincent Vermeylen Ghent University, Evolutionary Morphology of Vertebrates, K.L. Ledeganckstraat 35, 9000 Ghent
  • Anthony Herrel Ghent University, Evolutionary Morphology of Vertebrates, K.L. Ledeganckstraat 35, 9000 Ghent
  • Dominique Adriaens Ghent University, Evolutionary Morphology of Vertebrates, K.L. Ledeganckstraat 35, 9000 Ghent

DOI:

https://doi.org/10.26496/bjz.2021.83

Keywords:

chameleons, prehensility, gap bridging, substrate type

Abstract

Chameleons are well equipped for an arboreal lifestyle, having “zygodactylous” hands and feet as well as a fully prehensile tail. However, to what degree tail use is preferred over autopod prehension has been largely neglected. Using an indoor experimental set-up, where chameleons had to cross gaps of varying distances, we tested the effect of substrate diameter and roughness on tail use in Chamaeleo calyptratus. Our results show that when crossing greater distances, C. calyptratus is more likely to use its tail for additional stability. The animals were able to cross greater distances (up to 1.75 times the shoulder-hip length) on perches with a rougher surface. We saw that depending on the distance of the gap, chameleons would change how they use their prehensile tails when crossing. With shorter gaps the tails either do not touch, or only touch the perch without coiling around it. With larger distances the tails are fully coiled around the perch, and with the largest distances additionally they reposition the hind legs, shifting them towards the end of the perch. Males were able to cross relatively greater distances than females, likely due to their larger size and strength.

References

Ali S.M. (1947). Studies on the anatomy of the tail in Sauria and Rhynchocephalia. Proceedings of the Indiana Academy of Science 28: 151–165. https://doi.org/10.1007/BF03049956

Andrews R.M. (2008). Lizards in the slow lane: thermal biology of chameleons. Journal of Thermal Biology 33: 57–61. https://doi.org/10.1016/j.jtherbio.2007.10.001

Bergmann P.J., Lessard S. & Russel A.P. (2003). Tail growth in Chamaeleo dilepis (Sauria: Chamaeleonidae): functional implications of segmental patterns. Journal of Zoology 261: 417–425. https://doi.org/10.1017/S095283690300428X

Bickel R. & Losos J.B. (2002). Patterns of morphological variation and correlates of habitat use in Chameleons. Biological Journal of the Linnean Society 76: 91–103. https://doi.org/10.1111/j.1095-8312.2002.tb01717.x

Byrnes G. & Jayne B.C. (2012). The effects of three-dimensional gap orientation on bridging performance and behavior of brown tree snakes (Boiga irregularis). Journal of Experimental Biology 215: 2611–2620. https://doi.org/10.1242/jeb.064576

Carter A.J., Heinsohn R.I., Goldizen A.W. & Biro P.A. (2012). Boldness, trappability and sampling bias in wild lizards. Animal Behavior 83: 1051–1058. https://doi.org/10.1016/j.anbehav.2012.01.033

Cartmill M. (1985). Climbing. In: Hildebrand M., Bramble D.M., Liem K.F. & Wake D.B. (eds) Functional Vertebrate Morphology: 73–88. Belknap Press, Cambridge.

Da Silva J., Herrel A., Measey G.J., Vanhooydonck B. & Tolley K.A. (2014). Linking microhabitat structure, morphology and locomotor performance traits in a recent radiation of dwarf chameleons (Bradypodion). Functional Ecology 28: 702–713. https://doi.org/10.1111/1365-2435.12210

Fischer S.M., Krause C. & Lilje K.E. (2010). Evolution of chameleon locomotion, or how to become arboreal as a reptile. Zoology 113: 67–74. https://doi.org/10.1016/j.zool.2009.07.001

Gans C. (1967). The chameleon. Natural History 76: 52–59.

Graham M. & Socha J.J. (2020). Going the distance: the biomechanics of gap-crossing behaviors. Journal of Experimental Zoology A: Ecological and Integrative Physiology 333: 60–73. https://doi.org/10.1002/jez.2266

Herrel A. & Gibb A.C. (2006a). Ontogeny of performance in vertebrates. Physiological and Biochemical Zoology 79: 1–6. https://doi.org/10.1086/498196

Herrel A. & O’reily J.C. (2006b). Ontogenetic scaling of bite force in lizards and turtles. Physiological and Biochemical Zoology 79: 31–42. https://doi.org/10.1086/498193

Herrel A., Measey G.J., Vanhooydonck B. & Tolley K.A. (2011). Functional consequences of morphological differentiation between populations of the Cape Dwarf chameleon (Bradypodion pumilum). Biological Journal of the Linnean Society 104: 692–700. https://doi.org/10.1111/j.1095-8312.2011.01764.x

Herrel A., Tolley K.A., Measey G.J., Da Silva J.M., Potgieter D.F., Boller E., Boistel R. & Vanhooydonck B. (2012). Slow but tenacious: an analysis of running and gripping performance in chameleons. Journal of Experimental Biology 216: 1025–1030. https://doi.org/10.1242/jeb.078618

Hoefer K.M. & Jayne B.C. (2013). Three-dimensional locations of destinations have species-dependent effects on the choice of paths and the gap-bridging performance of arboreal snakes. Journal of Experimental Zoology A: Ecological Genetics and Physiology 319: 124–137. https://doi.org/10.1002/jez.1777

Khannoon E.R., Eindlein T., Russel A.P. & Autumn K. (2014). Experimental evidence for friction-enhancing integumentary modifications of chameleons and associated functional and evolutionary implications. Proceedings of the Royal Society B. 281 (1775). https://doi.org/10.1098/rspb.2013.2334

Luger A.M., Ollevier A., De Kegel B., Herrel A. & Adriaens D. (2020). Is variation in tail vertebral morphology linked to habitat use in chameleons? Journal of Morphology 281: 229–239. https://doi.org/10.1002/jmor.21093

Measey G.J., Hopkins K.P. & Tolley K.A. (2009). Morphology, ornaments and performance in two chameleon ectomorphs: is the casque bigger than the bite? Zoology 112: 217–226. https://doi.org/10.1016/j.zool.2008.09.005

Meyers J.J., Herrel A. & Birch J. (2002). Scaling of morphology, bite force, and feeding kinematics in an iguanian and a scleroglossan lizard. In: Aerts P., D’aout K., Herrel A. & Van Damme R. (eds) Topics in Functional and Ecological Vertebrate Morphology: 47–62. Shaker Publishing, Maastricht.

Peterson J.A. (1984). The locomotion of Chamaeleo (Reptilia: Sauria) with particular reference to the forelimb. Journal of Zoology 202: 1–42. https://doi.org/10.1111/j.1469-7998.1984.tb04286.x

Spinner M., Westhoff G. & Gorb S.N. (2014). Subdigital setae of chameleon feet: friction-enhancing microstructures for a wide range of substrate roughness. Scientific Reports 4 (5481). https://doi.org/10.1038/srep05481

Thorpe S.K.S., Holder R. & Crompton R.H. (2009). Orangutans employ unique strategies to control branch flexibility. Proceedings of the National Academy of Sciences 106: 12646–12651. https://doi.org/10.1073/pnas.0811537106

Zippel K.C. & Glor R.E. (1999). On caudal prehensility and phylogenetic constraint in lizards: the influence of ancestral anatomy on function in Corucia and Furcifer. Journal of Morphology 239: 143–155. https://doi.org/fw4mnr

Downloads

Published

2021-02-17

How to Cite

Luger, A., Vermeylen, V., Herrel, A., & Adriaens, D. (2021). Do substrate roughness and gap distance impact gap-bridging strategies in arboreal chameleons?. Belgian Journal of Zoology, 151. https://doi.org/10.26496/bjz.2021.83

Issue

Section

Articles