Comparison of isotopic niches of four sea cucumbers species (Holothuroidea: Echinodermata) inhabiting two seagrass meadows in the southwestern Mediterranean Sea (Mostaganem, Algeria)

Authors

  • Nor Eddine Belbachir Protection, Valorization of Coastal Marine Resources and Molecular Systematic Laboratory, Department of Marine Sciences and Aquaculture, Faculty of Natural Sciences and Life, University of Abdelhamid Ibn Badis-Mostaganem, P.O. Box 227, 27000, Mostaganem
  • Gilles Lepoint MARE Centre, Laboratory of Oceanology, UR FOCUS, University of Liège http://orcid.org/0000-0003-4375-0357
  • Karim Mezali Protection, Valorization of Coastal Marine Resources and Molecular Systematic Laboratory, Department of Marine Sciences and Aquaculture, Faculty of Natural Sciences and Life, University of Abdelhamid Ibn Badis-Mostaganem, P.O. Box 227, 27000, Mostaganem

DOI:

https://doi.org/10.26496/bjz.2019.32

Keywords:

Echinodermata, holothuroids, stable isotopes, Mediterranean

Abstract

Among the fauna inhabiting the Posidonia oceanica seagrass meadow, holothurians are particularly abundant and provide essential ecological roles, including organic matter recycling within seagrass sediments. This study aimed to investigate the trophic niche of four holothurians of the order Holothuriida [Holothuria poli (Delle Chiaje, 1824), Holothuria tubulosa (Gmelin, 1791), Holothuria sanctori (Delle Chiaje, 1823) and Holothuria forskali (Delle Chiaje, 1823)] inhabiting P. oceanica meadows, through the measurement of nitrogen and carbon stable isotope ratios. Two shallow and contrasting sites of the littoral region of Mostaganem (North West Algeria) were chosen. The first site, located in Stidia, is weakly impacted by human activities. The second site, located in Salamandre, is highly impacted by human activities (industries, harbor facilities). High values of δ15N in holothurians and their food sources were observed at both sites. The δ13C values showed a lower contribution from detritic Posidonia than in other areas. This could be a consequence of P. oceanica bed degradation in the studied area. The stable isotope approach did not reveal dietary differences between species, and the four holothurians species exhibited significant isotopic niche overlap. However, niche sizes differed between species showing more variable individual trophic diversity in some species (H. tubulosa and H. sanctori in Salamandre; H. forskali in Stidia). If niche segregation does occur, it is not in terms of general resource use. More likely, it would be the abundance of food sources, the different life habits and their micro-habitats that may explain their co-existence in the P. oceanica seagrass meadow.

References

Amaro T., Bianchelli S., Billett D.S.M., Cunha M.R., Pusceddu A. & Danovaro R. (2010). The trophic biology of the holothurian Molpadia musculus: implications for organic matter cycling and ecosystem functioning in a deep submarine canyon. Biogeosciences 7: 2419–2432. https://doi.org/10.5194/bg-7-2419-2010

Bearhop S., Adams C.E., Waldron S., Fuller R.A. & Macleod H. (2004). Determining trophic niche width: a novel approach using stable isotope analysis. Journal of Animal Ecology 73 (5): 1007–1012. https://doi.org/10.1111/j.0021-8790.2004.00861.x

Belbachir N. (2012). Contribution à l’étude écologique de l’herbier à Posidonia oceanica (L.) Delile (1813) de la frange côtière de Mostaganem : Etat de santé et relation entre plante et échinoderme. Magister thesis. Abdelhamid Ibn Badis University-Mostaganem. Algeria, 178 pp.

Belbachir N & Mezali K. (2018). Food preferences of four aspidochirotid holothurians species (Holothuroidea: Echinodermata) inhabiting the Posidonia oceanica meadow of Mostaganem area (Algeria). SPC Bêche-de-mer Information Bulletin 38: 55–59.

Belbachir N., Mezali K. & Soualili D.L. (2014). Selective feeding behaviour in some aspidochirotid holothurians (Echinodermata: Holothuroidea) at Stidia, Mostaganem Province, Algeria. SPC Bêche-de-mer Information Bulletin 34: 34–37.

Benzait H. (2015). Contribution à l’évaluation de la Biodiversité des Echinodermes de la région côtière de Mostaganem. Magister thesis. Abdelhamid Ibn Badis University-Mostaganem. Algeria, 122 pp.

Boudouresque C.F., Bernard G., Bonhomme P., Charbonnel E., Diviacco G., Meinesz A., Pergent G., Pergent-Martini C., Ruitton S. & Tunesi L. (2006). Préservation et conservation des herbiers à Posidonia oceanica. Ramoge publications, Monaco: 1–200.

Calizza E., Costantini M.L., Carlino P., Bentivoglio F., Orlandi L. & Rossi L. (2013). Posidonia oceanica habitat loss and changes in litter-associated biodiversity organization: A stable isotope-based preliminary study. Estuarine, Coastal and Shelf Science 135: 137–145. https://doi.org/10.1016/j.ecss.2013.07.019

Caraveo-Patino J. & Soto L.A. (2005). Stable carbon isotope ratios for the gray whale (Eschrichtius robustus) in the breeding grounds of Baja California Sur, Mexico. Hydrobiologia 539 (1): 99–104. https://doi.org/10.1007/s10750-004-3370-0

Cole M.L., Kroeger K.D., McClelland J.W & Valiela I. (2005). Macrophytes as indicators of land-derived wastewater: Application of a δ15N method in aquatic systems. Water Resources Research 41: W01014. https://doi.org/10.1029/2004WR003269

Coplen T.B. (2011). Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurements results. Rapid Communications in Mass Spectrometry 25 (17): 2538– 2560. https://doi.org/10.1002/rcm.5129

Costa V., Mazzola A. & Vizzini S. (2014). Holothuria tubulosa Gmelin 1791 (Holothuroidea, Echinodermata) enhances organic matter recycling in Posidonia oceanica meadows. Journal of Experimental Marine Biology and Ecology 461: 226–232. https://doi.org/10.1016/j.jembe.2014.08.008

Coulon P. & Jangoux M. (1993). Feeding rate and sediment reworking by the holothuroid Holothuria tubulosa (Echinodermata) in a Mediterranean seagrass bed of Ischia Island, Italy. Marine Ecology Progress Series 92: 201–204.

Cooper M.J., Uzarski D.G. & Burton T.M. (2007). Macroinvertebrate community composition in relation to anthropogenic disturbance, vegetation, and organic sediment depth in four lake Michigan drowned river-mouth wetlands samples. Wetlands 27 (4): 894–903. https://doi.org/10.1672/0277-5212(2007)27[894:MCCIRT]2.0.CO;2

Dalerum F. & Angerbjorn A. (2005). Resolving temporal variation in vertebrate diets using naturally occurring stable isotopes. Oecologia 144 (4): 647–658. https://doi.org/10.1007/s00442-005-0118-0

Dauby P. & Poulicek M. (1995). Methods for removing epiphytes from seagrasses: SEM observations on treated leaves. Aquatic Botany 52 (3): 217–228. https://doi.org/10.1016/0304-3770(95)00500-5

Dromard C. (2013). Niches trophiques des poissons herbivores des Antilles : apports des isotopes stables. PhD Thesis, University of Antilles and la Guyane. 254 pp.

Finlay J.C. & Kendall C. (2007). Stable isotope tracing of temporal and spatial variability in organic matter sources to freshwater ecosytems. In: Michener R. & Lajtha K. (eds) Stable Isotopes in Ecology and Environmental Science: 283–333. Blackwell, Oxford.

Francour P. (1990). Dynamique de l’écosystème à Posidonia oceanica dans le Parc national de Port-Cros. Analyse des compartiments “matte”, litière, faune vagile, échinodermes et poissons. PhD Thesis, Pierre et Marie Curie University, Paris VI, 373 pp.

Fry B. (2006). Stable Isotope Ecology. Springer, Science Business Media, USA. https://doi.org/10.1007/0-387-33745-8

Giraud G. (1977). Essai de classement des herbiers de Posidonia oceanica (Linné) Delile. Botanica Marina 20 (8): 487–491. https://doi.org/10.1515/botm.1977.20.8.487

Gobert S., Cambridge M.T., Velimirov B., Pergent G., Lepoint G., Bouquegneau J.M., Dauby P., Pergent-Martini C. & Walker D.I. (2006). Biology of Posidonia. In: Larkum A.W.D., Orth R.J. & Duarte C.M. (eds) Seagrasses: Biology, Ecology and Conservation. 387–408. Springer Netherlands, Dordrecht. https://doi.org/10.1007/978-1-4020-2983-7_17

İşgören-Emiroğlu D. & Günay D. (2007). The effect of sea cucumber Holothuria tubulosa (G., 1788) on nutrient and sediment of Aegean Sea shores. Pakistan Journal of Biological Sciences 10 (4): 586–589. https://doi.org/10.3923/pjbs.2007.586.589

Jackson A.L., Inger R., Parnell A.C. & Bearhop S. (2011). Comparing isotopic niche widths among and within communities: SIBER – Stable Isotope Bayesian Ellipses in R. Journal of Animal Ecology 80 (3): 595–602. https://doi.org/10.1111/j.1365-2656.2011.01806.x

Jarman S.N., Gales N.J., Tierney M., Gill P.C. & Elliott N.G. (2002). A DNA-based method for identification of krill species and its application to analyzing the diet of marine vertebrate predators. Molecular Ecology 11 (12): 2679–2690. https://doi.org/10.1046/j.1365-294X.2002.01641.x

Lassauque J., Lepoint G., Thibaut T., Francour P. & Meinesz A. (2010). Tracing sewage and natural freshwater input in a Northwest Mediterranean bay: Evidence obtained from isotopic ratios in marine organisms. Marine Pollution Bulletin 60: 843–851. https://doi.org/10.1016/j.marpolbul.2010.01.008

Lepoint G., Nyssen F., Gobert S., Dauby P. & Bouquegneau J.M. (2000). Relative impact of a seagrass bed and its adjacent epilithic algal community in consumer diets. Marine Biology 136 (3): 513–518. https://doi.org/10.1007/s002270050711

Mactavish T., Stenton-Dozey J., Vopel K. & Savage C. (2012). Deposit feeding sea cucumbers enhance mineralization and nutrient cycling in organically-enriched coastal sediments. PLoS ONE 7 (11): e50031. https://doi.org/10.1371/journal.pone.0050031

Mascart T., De Troch M., Remy F., Michel L.N. & Lepoint G. (2018). Seasonal dependence on seagrass detritus and trophic niche partitioning in four copepod eco-morphotypes. Food webs 16: e00086. https://doi.org/10.1016/j.fooweb.2018.e00086

Mezali K. (2004). Micro-répartition des holothuries aspidochirotes au sein de l’herbier de Posidonies de la presqu’île de Sidi-Fredj - Algérie. Rapports P.V. Commission International pour l’Exploration Scientifique de la Mer Méditerranée, Monaco, Vol. 37, p 534.

Mezali K. (2008). Phylogénie, Systématique, dynamique des populations et nutrition de quelques espèces d’holothuries aspidochirotes (Holothuroidea: Echinodermata) inféodées aux herbiers de Posidonies de la côte algéroise. PhD thesis. University of Science and Technology Houari Boumediene. Alger, Algeria. 208 pp.

Mezali K. & Soualili D.L. (2013). Capacité de sélection des particules sédimentaires et de la matière organique chez les holothuries. SPC Bêche-de-mer Information Bulletin 33: 38–43.

Mezali K., Chekaba B., Zupo V. & Asslah B. (2003). Comportement alimentaire de cinq espèces d’holothuries aspidochirotes (Holothuroidea: Echinodermata) de la presqu’île de Sidi-Fredj (Algérie). Bulletin de la Société zoologique de France 128 (1): 1–14.

Ogden L.J.E., Hobson K.A. & Lank D.B. (2004). Blood isotopic (δ13C and δ15N) turnover and diet-tissue fractionation factors in captive dunlin (Calidris alpina pacifica). The Auk: Ornithological Advances 121 (1) : 170–177. https://doi.org/10.1642/0004-8038(2004)121[0170:BICANT]2.0.CO;2

Pergent G., Pergent-Martini C. & Boudouresque C.F. (1995). Utilisation de l’herbier à Posidonia oceanica comme indicateur biologique de la qualité du milieu littoral en Méditerranée : état des connaissances. Mésogée 54: 3–29.

Purcell S., Mercier A., Conand C., Hamel J.F., Toral-Granda M.V., Lovatelli A. & Uthicke S. (2013). Sea cucumber fisheries: global analysis of stocks, management measures and drivers of overfishing. Fish and Fisheries 14 (1): 34–59. https://doi.org/10.1111/j.1467-2979.2011.00443.x

Pyke G.H., Pulliam H.R., & Charnov E.L. (1977). Optimal foraging: A selective review of theory and tests. Quaternary Review of Biology 52: 137–154. https://doi.org/10.1086/409852

R Core Team 2017. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available from https://www.R-project.org/ [accessed 29 May 2019].

Remy F., Mascart T., De Troch M., Michel L. & Lepoint G. (2018). Seagrass organic matter transfer in Posidonia oceanica macrophytodetritus accumulations. Estuarine, Coastal and Shelf Science 212: 73–79. https://doi.org/10.1016/j.ecss.2018.07.001

Ricart A.M., Dalmau A., Pérez M. & Romero J. (2015). Effects of landscape configuration on the exchange of materials in seagrass ecosystems. Marine Ecology Progress Series 532: 89–100. https://doi.org/10.3354/meps11384

Richir J., Salivas-Decaux M., Lafabrie C., Lopez Y Royo C., Gobert S., Pergent G. & Pergent-Martini C. (2015). Bioassessment of trace element contamination of Mediterranean coastal waters using the seagrass Posidonia oceanica. Journal of Environmental Management 151: 486–499. https://doi.org/10.1016/j.jenvman.2014.11.015

Rossi L., Di Lascio A., Carlino P., Calizza E. & Costantini M.L. (2015). Predator and detritivore niche width helps to explain biocomplexity of experimental detritus-based food webs in four aquatic and terrestrial ecosystems. Ecological Complexity 23: 14–24. https://doi.org/10.1016/j.ecocom.2015.04.005

Sicuro B., Piccinno M., Gai F., Abete M.C., Danieli A., Dapra F., Mioletti S. & Vilella S. (2012). Food quality and safety of Mediterranean sea cucumbers Holothuria tubulosa and Holothuria polii in southern Adriatic Sea. Asian Journal of Animal and Veterinary Advances 7 (9): 851–859. https://doi.org/10.3923/ajava.2012.851.859

Smith S.C. & Whitehead H. (2000). The diet of Galapagos sperm whales Physeter macrocephalus as indicated by fecal sample analysis. Marine Mammal Science 16 (2): 315–325. https://doi.org/10.1111/j.1748-7692.2000.tb00927.x

Sonnenholzner J. (2003). Seasonal variation in the food composition of Holothuria theeli (Holothuroidea: Aspidochirotida) with observations on density and distribution patterns at the central coast of Ecuador. Bulletin of Marine Science 73 (3): 527–543.

Soualili D., Dubois P., Gosselin P., Pernet P. & Guillou M. (2008). Assessment of seawater pollution by heavy metals in the neighbourhood of Algiers: use of the sea urchin, Paracentrotus lividus, as a bioindicator. ICES Journal of Marine Science 65: 132–139. https://doi.org/10.1093/icesjms/fsm183

Tieszen L.L., Boutton T.W., Tesdahl K.G. & Slade N.A. (1983). Fractionation and turnover of stable carbon isotopes in animal tissues: implications for δ13C analysis of diet. Oecologia 57 : 32–37. https://doi.org/10.1007/BF00379558

Vermeulen S., Sturaro N., Gobert S., Bouquegneau J.M. & Lepoint G. (2011). Potential early indicators of anthropogenically derived nutrients: a multiscale stable isotope analysis. Marine Ecology Progress Series 422: 9–22. https://doi.org/10.3354/meps08919

Vizzini S. (2009). Analysis of the trophic role of Mediterranean seagrasses in marine coastal ecosystems: a review. Botanica Marina 52 (5): 383–393. https://doi.org/10.1515/BOT.2009.056.

Walker D.I., Pergent G. & Fazi S. (2001). Seagrass decomposition. In: Short F.T. & Cole R.G. (eds) Global Seagrass Research Methods: 313–324. Elsevier Scientific Publishers B.V., Amsterdam.

Downloads

Published

2019-07-11

How to Cite

Belbachir, N. E., Lepoint, G., & Mezali, K. (2019). Comparison of isotopic niches of four sea cucumbers species (Holothuroidea: Echinodermata) inhabiting two seagrass meadows in the southwestern Mediterranean Sea (Mostaganem, Algeria). Belgian Journal of Zoology, 149. https://doi.org/10.26496/bjz.2019.32

Issue

Section

Articles