Succession in harvestman (Opiliones) communities within an abandoned sand quarry in Belgium

Authors

  • Pallieter De Smedt Ghent University, Forest & Nature Lab, Geraardsbergsesteenweg 267, B-9090 Gontrode (Melle)
  • Sam Van de Poel Alemstraat 17a, B-1880 Kapelle-op-den-Bos

DOI:

https://doi.org/10.26496/bjz.2017.13

Keywords:

harvestmen, restoration, soil-dwelling fauna, natural succession, human-disturbed landscape

Abstract

Sand mining strongly alters the existing landscape, transforming an area into a mosaic of native (sand deposits) and foreign soils, strongly influencing biotic development. The method of restoration of such excavated areas is often debated: natural succession or active restoration. We investigated how natural succession shapes harvestman communities, as part of the soil-dwelling community. We sampled harvestmen over a continuous period of 14 months in 25 plots in an abandoned sand quarry in Belgium using pitfall traps. We found significant increases in harvestman activity-density, species richness and diversity with time since abandonment of the various sections of the quarry. After about 15 years, a drastic change in species composition was observed with the establishment of forest species that more strongly depend on humid conditions to complete their life cycle. Colonisation of harvestmen closely followed vegetation succession despite their limited mobility. We argue that natural succession could be a good management tool for restoring harvestman communities as well as those of other soil-dwelling invertebrates in abandoned sand quarries.

References

Adams J. (1984). The habitat and feeding ecology of woodland harvestmen (Opiliones) in England. Oikos, 42: 361–370.

Barkman J.J., Doing H. & Segal S. (1964). Kritische Bemerkungen und Vorschläge zur quantitativen Vegetationsanalyse. Acta botanica neerlandica, 13: 394–419.

Curtis D.J. & Machado G. (2007). Ecology. In: Pinto-da-Rocha R. et al. (eds), Harvestmen: the biology of Opiliones: 208–308. Harvard University Press, Cambridge, MA.

De Schrijver A., De Frenne P., Staelens J., Verstraeten G., Muys B., Vesterdal L., Wuyts K., Van Nevel L., Schelfhout S., De Neve S. & Verheyen K. (2012). Tree species traits cause divergence in soil acidification during four decades of postagricultural forest development. Global Change Biology, 18: 1127–1140. https://doi.org/10.1111/j.1365-2486.2011.02572.x

Dunger W., Wanner M., Hauser H., Hohberg K., Schulz H.J., Schwalbe T., Seifert B., Vogel J., Voigtländer K., Zimdars B. & Zulka K.P. (2001). Development of soil fauna at mine sites during 46 years after afforestation. Pedobiologia, 45: 243–271. https://doi.org/10.1078/00314050122254957

Heneberg P. & Řezáč M. (2014). Dry sandpits and gravel-sandpits serve as key refuges for endangered epigeic spiders (Araneae) and harvestmen (Opiliones) of Central European steppes aeolian sands. Ecological Engineering, 73: 659–670. https://doi.org/10.1016/j.ecoleng.2014.09.101

Heneberg P., Hesoun P. & Skuhrovec J. (2016). Succession of arthropods on xerothermophilous habitats formed by sand quarrying: Epigeic beetles (Coleoptera) and orthopteroids (Orthoptera, Dermaptera and Blattodea). Ecological Engineering, 95: 340–356. https://doi.org/10.1016/j.ecoleng.2016.06.022

Kuiper M. & Noordijk J. (2012). Hooiwagens (Opiliones) in Groningse akkerranden. Entomologische berichten, 72: 231–237.

Lavelle P., Decaëns T., Aubert M., Barot S., Blouin M., Bureau F., Margerie P., Mora P. & Rossi J.-P. (2006). Soil invertebrates and ecosystem services. European Journal of Soil Biology, 42: S3–S15. https://doi.org/10.1016/j.ejsobi.2006.10.002

Muster C. & Meyer M. (2014). Verbreitungsatlas der Weberknechte des Großherzogtums Luxemburg. Ferrantia 70. Musée national d’Histoire naturelle, Luxembourg.

Noordijk J. & Wijnhoven H. (2009). Hooiwagenwaarnemingen uit Zeeuwse akkerranden (Opiliones). Entomologische berichten, 69: 78–82.

Noordijk J., Lammers M. & Hijerman T. (2012). De strooiselbewonende hooiwagens van stuwwalbossen (Opiliones). Nederlandse faunistische mededelingen, 38: 17–24.

Oksanen J., Blanchet F.G., Kindt R., Legendre P., Minchin P.R., O’Hara R., Simpson G.L., Solymos P., Stevens M. & Wagner H. (2015). Vegan: Community Ecology Package. R package version 2.0-10.2013. Available from https://cran.r-project.org/web/packages/vegan/index.html [accessed 24 November 2017].

Prach K. & Pyšek P. (2001). Using spontaneous succession for restoration of human-disturbed habitats: Experience from Central Europe. Ecological Engineering, 17: 55–62. https://doi.org/10.1016/S0925-8574(00)00132-4

Prach K., Lencová K., Řehounková K., Dvořáková H., Jírová A., Konvalinková P., Mudrák O., Novák J. & Trnková R. (2013). Spontaneous vegetation succession at different central European mining sites: a comparison across seres. Environmental Science and Pollution Research, 20: 7680–7685. https://doi.org/10.1007/s11356-013-1563-7

Prach K., Řehounková K., Řehounek J. & Konvalinková P. (2011). Ecological restoration of central European mining sites: a summary of a multi-site analysis. Landscape Research, 36: 263–268. https://doi.org/10.1080/01426397.2010.547571

R Development Core Team (2014). R: A Language and Environment for Statistical Computing. R foundation for statistical computing, Vienna.

Řehounková K. & Prach K. (2008). Spontaneous vegetation succession in gravel-sand pits: A potential for restoration. Restoration Ecology, 16: 305–312. https://doi.org/10.1111/j.1526-100X.2007.00316.x

Schaminée J.H.J., Sýkora K.V., Smits N.A.C. & Horsthuis M.A.P. (2010). Veldgids Planten-gemeenschappen van Nederland. KNNV Uitgeverij, Zeist.

Ström L., Hylander K. & Dynesius M. (2009). Different long-term and short-term responses of land snails to clear-cutting of boreal stream-side forests. Biological Conservation, 142: 1580–1587. https://doi.org/10.1016/j.biocon.2009.02.028

Suzuki R. & Shimodaira H. (2015). Pvclust: Hierarchical clustering with P-values via multiscale bootstrap resampling. R package version 2.0-0. Available from https://cran.r-project.org/web/packages/pvclust/pvclust.pdf [accessed 5 Dec. 217].

Thiele H.U. (1977). Carabid Beetles in their environments: A study on habitat selection by adaptations in physiology and behaviour. Springer-Verlag, New York.

Thien S.J. (1979). A flow diagram for teaching texture-by-feel analysis. Journal of Agronomic Education, 8: 54–55.

Todd V. (1949). The habits and ecology of the British harvestmen (Arachnida, Opiliones), with special reference to those of the Oxford district. The Journal of Animal Ecology, 18: 209–229. https://doi.org/10.2307/1600

Topp W., Kappes H., Kulfan J. & Zach P. (2006). Distribution pattern of woodlice (Isopoda) and millipedes (Diplopoda) in four primeval forests of the Western Carpathians (Central Slovakia). Soil Biology & Biochemistry, 38: 43–50. https://doi.org/10.1016/j.soilbio.2005.04.012

Van den Brande J. (2012). Weather station Kapelle-op-den-Bos. Available from weerstationkapelleopdenbos.be [accessed 22 November 2017].

Van der Hammen L. (1983). The distribution of spiders and harvestmen (Chelicerata) in the Dutch National Park “De Hoge Veluwe”. Zoölogische Mededelingen, 57: 325–338.

Walker L.R. & Del Moral R. (2003). Primary Succession and Ecosystem Rehabilitation. Cambridge University Press, Cambridge.

Wijnhoven H. (2009). De Nederlandse hooiwagens (Opiliones). Entomologische Tabellen, 3: 1–118.

Woodcock B A (2004). Pitfall trapping in ecological studies. In: Leather S.R. (ed.), Insect Sampling in Forest Ecosystems: 37–57. Methods in Ecology Series, Blackwell Science, Oxford. https://doi.org/10.1002/9780470750513.ch3

Downloads

Published

2017-12-07

How to Cite

De Smedt, P., & Van de Poel, S. (2017). Succession in harvestman (Opiliones) communities within an abandoned sand quarry in Belgium. Belgian Journal of Zoology, 147(2). https://doi.org/10.26496/bjz.2017.13

Issue

Section

Articles