Intraspecific morphological and genetic variation in South African populations of a polystomatid flatworm parasite

Authors

  • Anneke Lincoln Schoeman African Amphibian Conservation Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, 11 Hoffman Street, Potchefstroom 2531, South Africa
  • Nikol Kmentová Hasselt University, Centre for Environmental Sciences, Research Group Zoology: Biodiversity & Toxicology, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium
  • Maarten P.M. Vanhove Hasselt University, Centre for Environmental Sciences, Research Group Zoology: Biodiversity & Toxicology, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium
  • Louis Heyns Du Preez African Amphibian Conservation Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, 11 Hoffman Street, Potchefstroom 2531, South Africa

DOI:

https://doi.org/10.26496/bjz.2024.118

Keywords:

integrative taxonomy, phylogeography, Protopolystoma xenopodis, Xenopus laevis

Abstract

The African Clawed Frog Xenopus laevis, a global invader, exhibits a marked phylogeographic divergence among native populations in southern Africa, which seems to enhance its invasive potential. The polystomatid flatworm, Protopolystoma xenopodis, is the frog’s most frequently co-introduced metazoan parasite. In an integrative approach, we utilised morphometrics and molecular markers to assess variation in P. xenopodis in its native range. We measured twelve key morphological characters from 23 flatworms and compared these statistically between flatworms collected from the northern- and southernmost distribution in South Africa. Phylogenetic analyses were based on three concatenated markers, namely 28S and 12S rDNA and COX1, from six flatworms. The combination of five morphological characters, which involve egg size, gut morphology and size of the attachment hooks, differentiated northern and southern populations of P. xenopodis. The multilocus phylogenetic analyses showed a cluster of northern P. xenopodis and two southern lineages with more basal positioning. These findings demonstrate a relatively high level of intraspecific variation in P. xenopodis in its native range. The presented intraspecific variation of P. xenopodis could be potentially informative to trace geographic origin in its non-native range.

References

Aisien M.S.O. & du Preez L.H. (2009). A redescription of Polystoma africanum Szidat, 1932 (Monogenea: Polystomatidae). Zootaxa 2095: 37–46. https://doi.org/10.11646/zootaxa.2095.1.4

Barlow A., Baker K., Hendry C.R., Peppin L., Phelps T., Tolley K.A., Wüster C.E. & Wüster W. (2013). Phylogeography of the widespread African puff adder (Bitis arietans) reveals multiple Pleistocene refugia in southern Africa. Molecular Ecology 22: 1134–1157. https://doi.org/10.1111/mec.12157

Berthier P., du Preez L.H., Raharivololoniana L., Vences M. & Verneau O. (2014). Two new species of polystomes (Monogenea: Polystomatidae) from the anuran host Guibemantis liber. Parasitology International 63: 108–119. https://doi.org/10.1016/j.parint.2013.09.014

Chernomor O., von Haeseler A. & Minh B.Q. (2016). Terrace aware data structure for phylogenomic inference from supermatrices. Systematic Biology 65: 997–1008. https://doi.org/10.1093/sysbio/syw037

Constantin A.-E. & Patil I. (2021). ggsignif: R package for displaying significance brackets for ’ggplot2’. PsyArxiv. https://doi.org/10.31234/osf.io/7awm6

de Busschere C., Courant J., Herrel A., Rebelo R., Rödder D., Measey G.J. & Backeljau T. (2016). Unequal contribution of native South African phylogeographic lineages to the invasion of the African clawed frog, Xenopus laevis, in Europe. PeerJ 4: e1659. https://doi.org/10.7717/peerj.1659

du Preez L.H., Vaucher C. & Mariaux J. (2002). Polystomatidae (Monogenea) of African Anura: Polystoma dawiekoki n. sp. parasitic in Ptychadena anchietae (Bocage). Systematic Parasitology 52: 35–41. https://doi.org/10.1023/a:1015034329033

Edgar R.C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792–1797. https://doi.org/10.1093/nar/gkh340

Ennen J.R., Kalis M.E., Patterson A.L., Kreiser B.R., Lovich J.E., Godwin J. & Qualls C.P. (2014). Clinal variation or validation of a subspecies? A case study of the Graptemys nigrinoda complex (Testudines: Emydidae). Biological Journal of the Linnean Society 111: 810–822. https://doi.org/10.1111/bij.12234

Furman B.L., Bewick A.J., Harrison T.L., Greenbaum E., Gvozdik V., Kusamba C. & Evans B.J. (2015). Pan-African phylogeography of a model organism, the African clawed frog Xenopus laevis. Molecular Ecology 24: 909–925. https://doi.org/10.1111/mec.13076

Gouy M., Guindon S. & Gascuel O. (2010). SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution 27: 221–224. https://doi.org/10.1093/molbev/msp259

Gu X., Fu Y.X. & Li W.H. (1995). Maximum likelihood estimation of the heterogeneity of substitution rate among nucleotide sites. Molecular Biology and Evolution 12: 546–557. https://doi.org/10.1093/oxfordjournals.molbev.a040235

Guindon S., Dufayard J.F., Lefort V., Anisimova M., Hordijk W. & Gascuel O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59: 307–321. https://doi.org/10.1093/sysbio/syq010

Hahn C., Bakke T.A., Bachmann L., Weiss S. & Harris P.D. (2011). Morphometric and molecular characterization of Gyrodactylus teuchis Lautraite, Blanc, Thiery, Daniel & Vigneulle, 1999 (Monogenea: Gyrodactylidae) from an Austrian brown trout population. Parasitology International 60: 480–487. https://doi.org/10.1016/j.parint.2011.08.016

Hasegawa M., Kishino H. & Yano T. (1985). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22: 160–174. https://doi.org/10.1007/BF02101694

Héritier L., Badets M., du Preez L.H., Aisien M.S., Lixian F., Combes C. & Verneau O. (2015). Evolutionary processes involved in the diversification of chelonian and mammal polystomatid parasites (Platyhelminthes, Monogenea, Polystomatidae) revealed by palaeoecology of their hosts. Molecular Phylogenetics and Evolution 92: 1–10. https://doi.org/10.1016/j.ympev.2015.05.026

Héritier L., Verneau O., Smith K.G., Coetzer C. & du Preez L.H. (2018). Demonstrating the value and importance of combining DNA barcodes and discriminant morphological characters for polystome taxonomy (Platyhelminthes, Monogenea). Parasitology International 67: 38–46. https://doi.org/10.1016/j.parint.2017.03.002

Hoang D.T., Chernomor O., von Haeseler A., Minh B.Q. & Vinh L.S. (2018). UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35: 518–522. https://doi.org/10.1093/molbev/msx281

Huyse T., Vanhove M.P.M., Mombaerts M., Volckaert F.A.M. & Verreycken H. (2015). Parasite introduction with an invasive goby in Belgium: double trouble? Parasitology Research 114: 2789–2793. https://doi.org/10.1007/s00436-015-4544-6

Kalyaanamoorthy S., Minh B.Q., Wong T.K.F., von Haeseler A. & Jermiin L.S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14: 587–589. https://doi.org/10.1038/nmeth.4285

Kassambara A. & Mundt F. (2020). factoextra: extract and visualize the results of multivariate data analyses. R package version 1.0.7.

Kay M. (2021). ggdist: visualizations of distributions and uncertainty. R package version 3.0.1. https://doi.org/10.5281/zenodo.3879620

Kimura M. (1981). Estimation of evolutionary distances between homologous nucleotide sequences. Proceedings of the National Academy of Sciences of the United States of America 78: 454–458. https://doi.org/10.1073/pnas.78.1.454

Kmentová N., van Steenberge M., Thys van den Audenaerde D.F.E., Nhiwatiwa T., Muterezi Bukinga F., Mulimbwa N’sibula T., Masilya Mulungula P., Gelnar M. & Vanhove M.P.M. (2019). Co-introduction success of monogeneans infecting the fisheries target Limnothrissa miodon differs between two non-native areas: the potential of parasites as a tag for introduction pathway. Biological Invasions 21: 757–773. https://doi.org/10.1007/s10530-018-1856-3

Kmentová N., Koblmüller S., Van Steenberge M., Raeymaekers J.A.M., Artois T., De Keyzer E.L.R., Milec L., Muterezi Bukinga F., Mulimbwa N’sibula T., Masilya Mulungula P., Volckaert F.A.M., Gelnar M. & Vanhove M.P.M. (2020). Weak population structure and recent demographic expansion of the monogenean parasite Kapentagyrus spp. infecting clupeid fishes of Lake Tanganyika, East Africa. International Journal for Parasitology 50: 471–486. https://doi.org/10.1016/j.ijpara.2020.02.002

Kuperman B.I., Matey V.E., Fisher R.N., Ervin E.L., Warburton M.L., Bakhireva L. & Lehman C.A. (2004). Parasites of the African Clawed Frog, Xenopus laevis, in Southern California, U.S.A. Comparative Parasitology, 71: 229–232. https://doi.org/10.1654/4112

Lin Pedersen T. (2020). patchwork: the composer of plots. R package version 1.1.1. Available from https://cran.r-project.org/web/packages/patchwork/index.html

Littlewood D.T.J., Rohde K. & Clough K.A. (1997). Parasite speciation within or between host species? – Phylogenetic evidence from site-specific polystome monogeneans. International Journal for Parasitology 27: 1289–1297. https://doi.org/10.1016/S0020-7519(97)00086-6

Makokha J.S., Bauer A.M., Mayer W. & Matthee C.A. (2007). Nuclear and mtDNA-based phylogeny of southern African sand lizards, Pedioplanis (Sauria: Lacertidae). Molecular Phylogenetics and Evolution 44: 622–633. https://doi.org/10.1016/j.ympev.2007.04.021

Manier M.K. (2004). Geographic variation in the long-nosed snake, Rhinocheilus lecontei (Colubridae): beyond the subspecies debate. Biological Journal of the Linnean Society 83: 65–85. https://doi.org/10.1111/j.1095-8312.2004.00373.x

Measey G.J. & Davies S.J. (2011). Struggling against domestic exotics at the southern end of Africa. Froglog 97: 28–30.

Miller M.A., Pfeiffer W. & Schwartz T. (2010). Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees. Conference Proceedings. 2010 Gateway Computing Environments Workshop (GCE), Institute of Electrical and Electronics Engineers.

Minh B.Q., Schmidt H.A., Chernomor O., Schrempf D., Woodhams M.D., von Haeseler A. & Lanfear R. (2020). IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37: 1530–1534. https://doi.org/10.1093/molbev/msaa015

Mynhardt S., Maree S., Pelser I., Bennett N.C., Bronner G.N., Wilson J.W. & Bloomer P. (2015). Phylogeography of a morphologically cryptic golden mole assemblage from South-Eastern Africa. PLOS ONE 10: e0144995. https://doi.org/10.1371/journal.pone.0144995

Nguyen L.-T., Schmidt H.A., von Haeseler A. & Minh B.Q. (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32: 268–274. https://doi.org/10.1093/molbev/msu300

Nielsen S.V., Daniels S.R., Conradie W., Heinicke M.P. & Noonan B.P. (2018). Multilocus phylogenetics in a widespread African anuran lineage (Brevicipitidae: Breviceps) reveals patterns of diversity reflecting geoclimatic change. Journal of Biogeography 45: 2067–2079. https://doi.org/10.1111/jbi.13394

Oksanen J., Blanchet F.G., Friendly M., Kindt R., Legendre P., McGlinn D., Minchin P.R., O’Hara R.B., Simpson G.L., Solymos P., Stevens M.H.H., Szoecs E. & Wagner H. (2020). vegan: community ecology package. R package version 2.5-7. Available from https://cran.r-project.org/web/packages/vegan/index.html

Ondračková M., Matějusová I. & Grabowska J. (2012). Introduction of Gyrodactylus perccotti (Monogenea) into Europe on its invasive fish host, Amur sleeper (Perccottus glenii, Dybowski 1877). Helminthologia 49: 21–26. https://doi.org/10.2478/s11687-012-0004-3

Posada D. 2003. Using MODELTEST and PAUP* to select a model of nucleotide substitution. Current Protocols in Bioinformatics 00: 6.5.1–6.5.14. https://doi.org/10.1002/0471250953.bi0605s00

Predel R., Neupert S., Huetteroth W., Kahnt J., Waidelich D. & Roth S. (2012). Peptidomics-based phylogeny and biogeography of Mantophasmatodea (Hexapoda). Systematic Biology 61: 609–629. https://doi.org/10.1093/sysbio/sys003

Premachandra T., Cauret C.M.S., Conradie W., Measey G.J. & Evans B.J. (2023). Population genomics and subgenome evolution of the allotetraploid frog Xenopus laevis in southern Africa. Genes | Genomes | Genetics 13: jkac325. https://doi.org/10.1093/g3journal/jkac325

QGIS Development Team. (2018). QGIS Geographic Information System. Oregon, United States of America: Open Source Geospatial Foundation Project. Available from http://qgis.osgeo.org/

R Core Team. (2021). R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Available from https://www.R-project.org/

Risch S. & Snoeks J. (2008). Geographic variation in Neolamprologus niger (Poll, 1956) (Perciformes: Cichlidae) from Lake Tanganyika (Africa). Zootaxa 1857: 21–32. https://doi.org/10.11646/zootaxa.1857.1.2

Robinson D., Hayes A. & Couch S. (2022). broom: convert statistical objects into tidy tibbles. R package version 0.7.11. https://cran.r-project.org/web/packages/broom/index.html

Rodrigues R.A.E. (2014). Macroparasites of invasive Xenopus laevis (Amphibia: Anura): characterization and assessment of possible exchanges with native Pelophylax perezi in Oeiras streams, Portugal. MSc Thesis, Lisbon, University of Lisboa.

Ronquist F., Teslenko M., van der Mark P., Ayres D.L., Darling A., Hohna S., Larget B., Lui L., Suchard M.A. & Huelsenbeck J.P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. https://doi.org/10.1093/sysbio/sys029

Schoeman A.L., Kruger N., Secondi J. & du Preez L.H. (2019). Repeated reduction in parasite diversity in invasive populations of Xenopus laevis: a global experiment in enemy release. Biological Invasions 21: 1323–1338. https://doi.org/10.1007/s10530-018-1902-1

Schoeman A.L., du Preez L.H., Kmentová N. & Vanhove M.P.M. (2022). A monogenean parasite reveals the widespread translocation of the African Clawed Frog in its native range. Journal of Applied Ecology 59: 2670–2687. https://doi.org/10.1111/1365-2664.14271

Snyder S.D. & Clopton R.E. (2005). New methods for the collection and preservation of spirorchiid trematodes and polystomatid monogeneans from turtles. Comparative Parasitology 72: 102–107. https://doi.org/10.1654/4155

Soubrier J., Steel M., Lee M.S., Der Sarkissian C., Guindon S., Ho S.Y. & Cooper A. (2012). The influence of rate heterogeneity among sites on the time dependence of molecular rates. Molecular Biology and Evolution 29: 3345–3358. https://doi.org/10.1093/molbev/mss140

Stekhoven D.J. (2013). missForest: nonparametric missing value imputation using random forest. R package version 1.4

Stekhoven D.J. & Bühlmann P. (2012). missForest: non-parametric missing value imputation for mixed-type data. Bioinformatics 28: 112–118. https://doi.org/10.1093/bioinformatics/btr597

Tavaré S. (1986). Some probabilistic and statistical problems in the analysis of DNA sequences. Lectures on Mathematics in the Life Sciences 17: 56–86

Thorpe R.S. (1981). A comparative study of ordination techniques in numerical taxonomy in relation to racial variation in the ringed snake Natrix natrix (L.). Biological Journal of the Linnean Society 13: 7–40. https://doi.org/10.1111/j.1095-8312.1980.tb00067.x

Thys K.J.M., Vanhove M.P.M., Custers J.W.J., Vranken N., Van Steenberge M. & Kmentová N. (2022). Co-introduction of Dolicirroplectanum lacustre, a monogenean gill parasite of the invasive Nile perch Lates niloticus: intraspecific diversification and mitonuclear discordance in native versus introduced areas. International Journal for Parasitology 52: 775–786. https://doi.org/10.1016/j.ijpara.2022.09.001

Tinsley R.C. (1974). Observations on Polystoma africanum Szidat with a review of the inter-relationships of Polystoma species in Africa. Journal of Natural History 8: 355–367. https://doi.org/10.1080/00222937400770311

Tinsley R.C. (1978). The morphology and distribution of Eupolystoma species (Monogenoidea) in Africa, with a description of E. anterorchis sp. n. from Bufo pardalis at the Cape. Journal of Helminthology 52: 291–302. https://doi.org/10.1017/s0022149x00005514

Tinsley R.C. (1996). Parasites of Xenopus. In: Tinsley R.C. & Kobel H.R. (eds) The Biology of Xenopus: 233–261. Clarendon Press, Oxford.

Tinsley R.C. & Jackson J.A. (1998a). Correlation of parasite speciation and specificity with host evolutionary relationships. International Journal for Parasitology 28: 1573–1582. https://doi.org/10.1016/s0020-7519(98)00085-x

Tinsley R.C. & Jackson J.A. (1998b). Speciation of Protopolystoma Bychowsky, 1957 (Monogenea: Polystomatidae) in hosts of the genus Xenopus (Anura: Pipidae). Systematic Parasitology 40: 93–141. https://doi.org/10.1023/B:SYPA.0000004047.41228.a6

Tkach V., Grabda-Kazubska B., Pawlowski J. & Swiderski Z. (1999). Molecular and morphological evidence for close phylogenetic affinities of the genera Macrodera, Leptophallus, Metaleptophallus and Paralepoderma (Digenea, Plagiorchiata). Acta Parasitologica 44: 170–179.

Trifinopoulos J., Nguyen L.-T., von Haeseler A. & Minh B.Q. (2016). W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research 44: W232–W235. https://doi.org/10.1093/nar/gkw256

Urbanek S. (2013). png: read and write PNG images. R package version 0.1-7. Available from https://cran.r-project.org/web/packages/png/index.html

Vaidya G., Lohman D.J. & Meier R. (2011). SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27: 171–180. https://doi.org/10.1111/j.1096-0031.2010.00329.x

Vanhove M.P.M., Hermans R., Artois T. & Kmentová N. (2021). From the Atlantic coast to Lake Tanganyika: gill-infecting flatworms of freshwater pellonuline clupeid fishes in West and Central Africa, with description of eleven new species and key to Kapentagyrus (Monogenea: Dactylogyridae). Animals 11: 3578. https://doi.org/10.3390/ani11123578

van Sittert L. & Measey G.J. (2016). Historical perspectives on global exports and research of African clawed frogs (Xenopus laevis). Transactions of the Royal Society of South Africa 71: 157–166. https://doi.org/10.1080/0035919x.2016.1158747

Van Steenberge M., Vanhove M.P.M., Muzumani Risasi D., Mulimbwa N’Sibula T., Muterezi Bukinga F., Pariselle A., Gillardin C., Vreven E., Raeymaekers J.A.M., Huyse T., Volckaert F.A.M., Nshombo Muderhwa V. & Snoeks J. (2011). A recent inventory of the fishes of the north-western and central western coast of Lake Tanganyika (Democratic Republic Congo). Acta Ichthyologica et Piscatoria 41: 201–214. https://doi.org/10.3750/AIP2011.41.3.08

Van Steenberge M., Pariselle A., Huyse T., Volckaert F.A.M., Snoeks J. & Vanhove M.P.M. (2015). Morphology, molecules, and monogenean parasites: an example of an integrative approach to cichlid biodiversity. PLoS ONE 10: e0124474. https://doi.org/10.1371/journal.pone.0124474

Verneau O., du Preez L.H., Laurent V., Raharivololoniaina L., Glaw F. & Vences M. 2009. The double odyssey of Madagascan polystome flatworms leads to new insights on the origins of their amphibian hosts. Proceedings of the Royal Society B: Biological Sciences 276: 1575–1583. https://doi.org/10.1098/rspb.2008.1530

Waring E., Quinn M., McNamara A., Arino de la Rubia E., Zhu H. & Ellis S. (2021). skimr: compact and flexible summaries of data. R package version 2.1.3. Available from https://cran.r-project.org/web/packages/skimr/index.html

Wickham H., Averick M., Bryan J., Chang W., D’Agostino McGowan L., François R., Grolemund G., Hayes A., Henry L., Hester J. Kuhn M, Lin Pedersen T., Miller E., Milton Bache S., Müller K., Ooms J., Robinson D., Seidel D.P., Spinu V., Takahashi K., Wilke C.O., Woo K. & Yutani H. (2019). Welcome to the tidyverse. Journal of Open Source Software 4: 1686. https://doi.org/10.21105/joss.01686

Wilke C.O. (2020). ggtext: improved text rendering support for ’ggplot2’. R package version 0.1.1. Available from https://cran.r-project.org/web/packages/ggtext/index.html

Yang Z. (1994). Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. Journal of Molecular Evolution 39: 306–314. https://doi.org/10.1007/BF00160154

Downloads

Published

2024-02-15

How to Cite

Schoeman, A. L., Kmentová, N., Vanhove, M. P., & Du Preez, L. H. (2024). Intraspecific morphological and genetic variation in South African populations of a polystomatid flatworm parasite. Belgian Journal of Zoology, 154, 45–62. https://doi.org/10.26496/bjz.2024.118

Issue

Section

Articles