The genus Microniphargus (Crustacea, Amphipoda): evidence for three lineages distributed across northwestern Europe and transfer from Niphargidae to Pseudoniphargidae
DOI:
https://doi.org/10.26496/bjz.2021.92Keywords:
species delimitation, haploweb, K/θ, DNA barcoding, cryptic species, Microniphargus leruthiAbstract
Microniphargus leruthi Schellenberg, 1934 (Amphipoda: Niphargidae) was first described based on samples collected in Belgium and placed in a monotypic genus within the family Niphargidae. However, some details of its morphology as well as recent phylogenetic studies suggest that Microniphargus may be more closely related to Pseudoniphargus (Amphipoda: Pseudoniphargidae) than to Niphargus. Moreover, M. leruthi ranges over 1,469 km from Ireland to Germany, which is striking since only a few niphargids have confirmed ranges in excess of 200 km. To find out the phylogenetic position of M. leruthi and check whether it may be a complex of cryptic species, we collected material from Ireland, England and Belgium then sequenced fragments of the mitochondrial cytochrome c oxidase subunit 1 gene as well as of the nuclear 28S ribosomal gene. Phylogenetic analyses of both markers confirm that Microniphargus is closer to Pseudoniphargus than to Niphargus, leading us to reallocate Microniphargus to Pseudoniphargidae. We also identify three congruent mito-nuclear lineages present respectively in Ireland, in both Belgium and England, and in England only (with the latter found in sympatry at one location), suggesting that M. leruthi is a complex of at least three species with a putative centre of origin in England.References
Arnscheidt J., Hahn H.J. & Fuchs A. (2008). Aquatic subterranean Crustacea in Ireland: results and new records from a pilot study. Cave and Karst Science 35 (1): 53–58.
Astrin J.J. & Stüben P.E. (2008). Phylogeny in cryptic weevils: molecules, morphology and new genera of western Palaearctic Cryptorhynchinae (Coleoptera: Curculionidae). Invertebrate Systematics 22 (5): 503–522. https://doi.org/10.1071/IS07057
Bauzà -Ribot M.M., Juan C., Nardi F., Oromi P., Pons J. & Jaume D. (2012). Mitogenomic phylogenetic analysis supports continental-scale vicariance in subterranean thalassoid crustaceans. Current Biology 22: 2069–2074. https://doi.org/10.1016/j.cub.2012.09.012
Birky C.W. (2013). Species detection and identification in sexual organisms using population genetic theory and DNA sequences. PLoS ONE 8: e52544. https://doi.org/10.1371/journal.pone.0052544
Birky C.W., Adams J., Gemmel M. & Perry J. (2010). Using population genetic theory and DNA sequences for species detection and identification in asexual organisms. PLoS ONE 5: e10609. https://doi.org/10.1371/journal.pone.0010609
Borko Š., Collette M., Brad T., Zakšek V., Flot J.-F., Vaxevanopoulos M., Sarbu S.M. & Fišer C. (2019). Amphipods in a Greek cave with sulphidic and non-sulphidic water: phylogenetically clustered and ecologically divergent. Systematics and Biodiversity 17 (6): 558–572. https://doi.org/10.1080/14772000.2019.1670273
Copilaş-Ciocianu D., Fišer C., Borza P., Balázs G., Angyal D. & Petrusek A. (2017). Low intraspecific genetic divergence and weak niche differentiation despite wide ranges and extensive sympatry in two epigean Niphargus species (Crustacea: Amphipoda). Zoological Journal of the Linnean Society 181 (3): 485–499. https://doi.org/10.1093/zoolinnean/zlw031
Copilaş-Ciocianu D., Borko Š. & Fišer C. (2020). The late blooming amphipods: global change promoted post-Jurassic ecological radiation despite Palaeozoic origin. Molecular Phylogenetics and Evolution 143: 106664. https://doi.org/10.1016/j.ympev.2019.106664
Delhez F., Dethier M. & Hubart J.-M. (1999). Contribution à la connaissance de la faune des grottes de la Wallonie. Bulletin des Chercheurs de la Wallonie 39: 27–54.
Dierckxsens N., Mardulyn P. & Smits G. (2020). Unraveling heteroplasmy patterns with NOVOPlasty. NAR Genomics and Bioinformatics 2 (1): lqz011. https://doi.org/10.1093/nargab/lqz011
Dobreanu E. & Manolache C. 1933. Zur Kenntnis der Amphipodenfauna Rumäniens. Notationes Biologicae 1 (3): 102–108.
Doyle J.J. (1995). The irrelevance of allele tree topologies for species delimitation, and a non-topological alternative. Systematic Botany 20 (4): 574–588. https://doi.org/10.2307/2419811
Eme D., Zagmajster M., Delić T., Fišer C., Flot J.-F., Konecny-Dupré L., Pálsson S., Stoch F., Zakšek V., Douady C.J. & Malard F. (2018). Do cryptic species matter in macroecology? Sequencing European groundwater crustaceans yields smaller ranges but does not challenge biodiversity determinants. Ecography 41 (2): 424–436. https://doi.org/10.1111/ecog.02683
Fišer C., Konec M., Alther R., Švara V. & Altermatt F. (2017). Taxonomic, phylogenetic and ecological diversity of Niphargus (Amphipoda: Crustacea) in the Hölloch cave system (Switzerland). Systematics and Biodiversity 15 (3): 218–237. https://doi.org/10.1080/14772000.2016.1249112
Fišer C., Sket B. & Trontelj P. (2008). A phylogenetic perspective on 160 years of troubled taxonomy of Niphargus (Crustacea: Amphipoda). Zoologica Scripta 37 (6): 665–680. https://doi.org/10.1111/j.1463-6409.2008.00347.x
Flot J.-F., Couloux A. & Tillier S. (2010a). Haplowebs as a graphical tool for delimiting species: a revival of Doyle’s ‘field for recombination’ approach and its application to the coral genus Pocillopora in Clipperton. BMC Evolutionary Biology 10: 372. https://doi.org/10.1186/1471-2148-10-372
Flot J.-F., Wörheide G. & Dattagupta S. (2010b). Unsuspected diversity of Niphargus amphipods in the chemoautotrophic cave ecosystem of Frasassi, central Italy. BMC Evolutionary Biology 10: 171. https://doi.org/10.1186/1471-2148-10-171
Flot J.-F., Bauermeister J., Brad T., Hillebrand-Voiculescu A., Sarbu S.M., Dattagupta S. (2014). Niphargus–Thiothrix associations may be widespread in sulphidic groundwater ecosystems: evidence from southeastern Romania. Molecular Ecology 23 (6): 1405–1417.
https://doi.org/10.1111/mec.12461
Folmer O., Black M., Hoeh W., Lutz R. & Vrijenhoek R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3 (5): 294–299.
Fontaneto D., Flot J.-F. & Tang C.Q. (2015). Guidelines for DNA taxonomy, with a focus on the meiofauna. Marine Biodiversity 45: 433–451. https://doi.org/10.1007/s12526-015-0319-7
Fuchs A. (2007). Erhebung und Beschreibung der Grundwasserfauna in Baden-Württemberg. Thesis, Koblenz-Landau.
Hebert P.D.N., Cywinska A., Ball S.L. & de Waard J.R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society. Biological Sciences 270: 313–321. https://doi.org/10.1098/rspb.2002.2218
Hoang D.T., Chernomor O., von Haeseler A., Minh B.Q. & Vinh L.S. (2018). UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35: 518–522. https://doi.org/10.1093/molbev/msx281
Hoffmann J. (1963). Faune des Amphipodes du Grand-Duché de Luxembourg. Archives de la Section des Sciences de l’Institut Grand-Ducal Nouvelle Série 29: 77–128.
Jurado-Rivera J.A., Álvarez G., Caro J.A., Juan C., Pons J. & Jaume D. (2017). Molecular systematics of Haploginglymus, a genus of subterranean amphipods endemic to the Iberian Peninsula (Amphipoda: Niphargidae). Contributions to Zoology 86 (3): 239–260. https://doi.org/10.1163/18759866-08603004
Kalyaanamoorthy S., Minh B., Wong T., von Haeseler A. & Jermiin L.S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14: 587–589. https://doi.org/10.1038/nmeth.4285
Karaman G.S. & Ruffo S. (1986). Amphipoda: Niphargus-group (Niphargidae sensu Bousfield, 1982). In: Botoseanu L. (ed.) Stygofauna mundi. A Faunistic, Distributional, and Ecological Synthesis of the World Fauna inhabiting Subterranean Waters (including the Marine Interstitial): 514–534. Brill, Leiden.
Katoh K., Rozewicki J. & Yamada K.D. (2019). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20 (4): 1160–1166. https://doi.org/10.1093/bib/bbx108
Knight L.R.F.D. & Gledhill T. (2010). The discovery of Microniphargus leruthi Schellenberg, 1934 (Crustacea: Amphipoda: Niphargidae) in Britain and its distribution in the British Isles. Zootaxa 2655 (1): 52–56. https://doi.org/10.11646/zootaxa.2655.1.3
Knight L.R.F.D. & Penk M. (2010). Groundwater Crustacea of Ireland: a survey of the stygobitic Malacostraca in caves and springs. Biology & Environment Proceedings of the Royal Irish Academy 110 (3): 211–235. https://doi.org/10.3318/BIOE.2010.110.3.211
Kumar S., Stecher G., Li M., Knyaz C. & Tamura K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution 35 (6): 1547–1549. https://doi.org/10.1093/molbev/msy096
Lefébure T., Douady C.J., Gouy M., Trontelj P., Briolay J. & Gibert J. (2006). Phylogeography of a subterranean amphipod reveals cryptic diversity and dynamic evolution in extreme environments. Molecular Ecology 15: 1797–1806. https://doi.org/10.1111/j.1365-294X.2006.02888.x
Leruth R. (1939). La biologie du domaine souterrain et la faune cavernicole de la Belgique. Mémoire du Musée royal d’Histoire naturelle de Belgique 87: 1–506.
Lowry J.K. & Myers A.A. (2013). A phylogeny and classification of the Senticaudata subord. nov. (Crustacea: Amphipoda). Zootaxa 3610 (1): 1–80. https://doi.org/10.11646/zootaxa.3610.1.1
Lowry J.K. & Myers A.A. (2017). A phylogeny and classification of the Amphipoda with the establishment of the new order Ingolfiellida (Crustacea: Peracarida). Zootaxa 4265 (1): 1–89. https://doi.org/10.11646/zootaxa.4265.1.1
Matzke D., Fuchs A., Berkhoff S., Bork J. & Hahn H.-J. (2009). Erhebung und Bewertung der Grundwasserfauna Sachen-Anhalts. Institut für Grundwasserökologie GbR, Im Niederfeld 15, 76829 Landau, Landau.
McInerney C.E., Maurice L., Robertson A.L., Knight L.R.F.D., Arnscheidt J., Venditti C., Dooley J.S.G., Mathers T., Matthijs S., Erikkson K., Proudlove G.S. & Hänfling B. (2014). The Ancient Britons: groundwater fauna survived extreme climate changes over tens of millions of years across NW Europe. Molecular Ecology 23: 1153–1166. https://doi.org/10.1111/mec.12664
Minh B.Q., Schmidt H.A., Chernomor O., Schrempf D., Woodhams M.D., von Haeseler A., Lanfear R. (2020). IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37: 1530–1534. https://doi.org/10.1093/molbev/msaa015
Moškrič A. & Verovnik R. (2019). Five nuclear protein-coding markers for establishing a robust phylogenetic framework of niphargid crustaceans (Niphargidae: Amphipoda) and new molecular sequence data. Data in Brief 25: 104134. https://doi.org/10.1016/j.dib.2019.104134
Notenboom J. (1988). Parapseudoniphargus baetis, new genus, new species, a stygobiont amphipod crustacean from the Guadalquivir river basin (southern Spain), with phylogenetic implications. Journal of Crustacean Biology 8: 110–121. https://doi.org/10.1163/193724088X00134
Puillandre N., Lambert A., Brouillet S. & Achaz G. (2012). ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology 21 (8): 1864–1877. https://doi.org/10.1111/j.1365-294X.2011.05239.x
Schiödte J.C. (1849). Specimen faunæ subterraneae: bidrag til den underjordiske Fauna. Bianco Luno, Kjöbenhavn.
Schellenberg A. (1934). Eine neue Amphipoden-Gattung aus einer belgischen Höhle, nebst Bemerkungen über die Gattung Crangonyx. Zoologischer Anzeiger 106 (9): 215–218.
Schön I., Pinto R.L., Halse S., Smith A.J., Martens K. & Birky C.W. (2012). Cryptic species in putative ancient asexual darwinulids (Crustacea, Ostracoda). PLoS ONE 7: e39844. https://doi.org/10.1371/journal.pone.0039844
Schwarz G. (1978). Estimating the dimension of a model. The Annals of Statistics 6 (2): 461–464. https://doi.org/10.1214/aos/1176344136
Spangenberg H.-J. (1973). Beitrag zur Faunistik von Höhlengewässern im Zechstein des Südharzes und Kyffhäusers. Hercynia Neue Folge, 10 (2): 143–160.
Spöri Y. & Flot J.-F. (2020). HaplowebMaker and CoMa: two web tools to delimit species using haplowebs and conspecificity matrices. Methods in Ecology and Evolution 11 (11): 1434–1438. https://doi.org/10.1111/2041-210X.13454
Spöri Y., Stoch F., Dellicour S., Birky C.W. & Flot J.-F. (2021). KoT: an automatic implementation of the K/θ method for species delimitation. bioRxiv. https://doi.org/10.1101/2021.08.17.454531
Stein H., Griebler C., Berkhoff S., Matzke D., Fuchs A. & Hahn H.J. (2012). Stygoregions – a promising approach to a bioregional classification of groundwater systems. Scientific Reports 2: 673. https://doi.org/10.1038/srep00673
Stokkan M., Jurado-Rivera J.A., Juan C., Jaume D. & Pons J. (2016). Mitochondrial genome rearrangements at low taxonomic levels: three distinct mitogenome gene orders in the genus Pseudoniphargus (Crustacea: Amphipoda). Mitochondrial DNA Part A 27: 3579–3589. https://doi.org/10.3109/19401736.2015.1079821
Stokkan M., Jurado-Rivera J.A., Oromí P., Juan C., Jaume D. & Pons J. (2018). Species delimitation and mitogenome phylogenetics in the subterranean genus Pseudoniphargus (Crustacea: Amphipoda). Molecular Phylogenetics and Evolution 127: 988–999. https://doi.org/10.1016/j.ympev.2018.07.002
Trontelj P., Douady C.J., Fišer C., Gibert J., Gorički Š., Lefébure T., Sket B. & Zakšek V. (2009). A molecular test for cryptic diversity in ground water: how large are the ranges of macro-stygobionts? Freshwater Biology 54 (4): 727–744. https://doi.org/10.1111/j.1365-2427.2007.01877.x
Verovnik R., Sket B. & Trontelj P. (2005). The colonization of Europe by the freshwater crustacean Asellus aquaticus (Crustacea: Isopoda) proceeded from ancient refugia and was directed by habitat connectivity. Molecular Ecology 14 (14): 4355–4369. https://doi.org/10.1111/j.1365-294X.2005.02745.x
Waller M.P. & Long A.J. (2003). Holocene coastal evolution and sea-level change on the southern coast of England: a review. Journal of Quaternary Science 18 (3–4): 351–359. https://doi.org/10.1002/jqs.754
Downloads
Published
How to Cite
Issue
Section
License
All published papers will be put on-line as high resolution PDF’s. Copyright thus remains with the authors. All manuscripts will be licensed under a Creative Commons Attribution 3.0 License https://creativecommons.org/licenses/by/4.0/.