Season as a discriminating factor for faecal metabolomic composition of great tits (Parus major)

Authors

  • Roschong Boonyarittichaikij Wildlife Health Ghent, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke
  • Beata Pomian Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Merelbeke
  • Daan Daan Dekeukeleire Terrestrial Ecology Unit, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent
  • Luc Lens Terrestrial Ecology Unit, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent
  • Dries Bonte Terrestrial Ecology Unit, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent
  • Kris Verheyen Forest & Nature Lab, Department of Environment, Ghent University, Geraardsbergsesteenweg 267, 9090 Gontrode
  • Frank Pasmans Wildlife Health Ghent, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke
  • An Martel Wildlife Health Ghent, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke
  • Elin Verbrugghe Wildlife Health Ghent, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke

DOI:

https://doi.org/10.26496/bjz.2020.79

Keywords:

metabolomics, great tit, faeces, season, scaled mass index

Abstract

The microbiome of wild birds has been associated with health status and risk of disease development, but underlying metabolomic mechanisms are still unknown. Metabolites produced by microbial organisms may affect host metabolic processes and by doing so influence host health. Here we provide for the first time data on the faecal metabolome of wild great tits (Parus major) by analyzing metabolites associations with age, sex, season and body condition. Using untargeted metabolomics, we analyzed faecal samples from 112 great tits that were caught in a deciduous forest fragment in Flanders (Belgium) during late autumn and 19 animals that were re-captured during early spring. In this study, no significant associations between the faecal metabolites and age, sex and body condition were observed. However, season was shown to be a discriminating factor for the metabolomic composition of great tits, suggesting an impact of environmental factors.

References

Beauclercq S., Lefèvre A., Montigny F., Collin A., Tesseraud S., Leterrier C., Emond P. & Guilloteau L.A. (2019). A multiplatform metabolomic approach to characterize fecal signatures of negative postnatal events in chicks: a pilot study. Journal of Animal Science and Biotechnology 10: 21. https://doi.org/10.1186/s40104-019-0335-8

Cirulli E.T., Guo L., Swisher C.L., Shah N., Huang L., Napier L.A., Kirkness E.F., Spector T.D., Caskey C.T., Thorens B., Venter J.C., Telenti A. (2019). Profound perturbation of the metabolome in obesity is associated with health risk. Cell Metabolism 29: 488–500. https://doi.org/10.1016/j.cmet.2018.09.022

Dawson W.R. (1985). Relation of oxygen consumption and evaporative water loss to temperature in the cardinal. Physiological Zoology 31: 37–48. https://doi.org/10.1086/physzool.31.1.30155377

Dorr B.S., Hanson-Dorr K. C., Assadi-Porter F.M., Selen E.S., Healy K.A. & Horak K.E. (2019). Effects of repeated sublethal external exposure to deep water horizon oil on the avian metabolome. Scientific Reports 9: 1–12. https://doi.org/10.1038/s41598-018-36688-3

Golet G.H. & Irons D.B. (1999). Raising young reduces body condition and fat sotres in Black-legged Kittiwakes. Oecologia 120: 530–538. https://doi.org/10.1007/s004420050887

Gregory K.E., Bird S.S., Gross V.S., Marur V.R., Lazarev A.V., Walker W.A. & Kristal B.S. (2013). Method development for fecal lipidomics profiling. Analytical Chemistry 85: 1114–112. https://doi.org/10.1021/ac303011k

Grond K., Sandercock B.K., Jumpponen A. & Zeglin L.H. (2018). The avian gut microbiota: community, physiology and function in wild birds. Journal of Avian Biology 49: e01788. https://doi.org/10.1111/jav.01788

Hart J.S. (1962). Seasonal acclimatization in four species of small wild birds. Physiological Zoology 35: 224–236.

Kohl K.D., Amaya J., Passement C.A., Dearing M.D. & McCue M.D. (2014). Unique and shared responses of the gut microbiota to prolonged fasting: a comparative study across five classes of vertebrate hosts. FEMS Microbiology Ecology 90: 883–894. https://doi.org/10.1111/1574-6941.12442

Lamichhane S., Sen P., Dickens A.M., Orešič M. & Bertram H.C. (2018). Gut metabolome meets microbiome: A methodological perspective to understand the relationship between host and microbe. Methods 149: 3–12. https://doi.org/10.1016/j.ymeth.2018.04.029

Le Gall G., Noor S.O., Ridgway K., Scovell L., Jamieson C., Johnson I.T., Colquhoun I.J., Kemsley E.K. & Narbad A. (2011). Metabolomics of fecal extracts detects altered metabolic activity of gut microbiota in ulcerative colitis and irritable bowel syndrome. Journal of Proteome Research 10: 4208–4218. https://doi.org/10.1021/pr2003598

Ley R.E., Turnbaugh P.J., Klein S. & Gordon J.I. (2006). Microbial ecology: human gut microbes associated with obesity. Nature 444: 1022–1023. https://doi.org/10.1038/4441022a

Li D., Gao c., Zhang F., Yang R., Lan C., Ma Y. & Wang J. (2020). Seven facts and five initiatives for gut microbiome research. Protein & Cell 11: 391–400. https://doi.org/10.1007/s13238-020-00697-8

Li Z., Quan G., Jiang X., Yang Y., Ding X., Zhang D., Wang X., Hardwidge P.R., Ren W. & Zhu G. (2018). Effects of metabolites derived from gut microbiota and hosts on pathogens. Frontiers in Cellular and Infection Microbiology 8: 314. https://doi.org/10.3389/fcimb.2018.00314

Linnaeus D. (1758). Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Editio decima, reformata [10th revised edition], vol. 1. Laurentius Salvius, Holmiae.

Marcobal A., Kashyap P.C., Nelson T.A., Aronov P.A., Donia M.S., Spormann A., Fischbach M.A. & Sonnenburg J.L. (2013). A metabolomic view of how the human gut microbiota impacts the host metabolome using humanized and gnotobiotic mice. The ISME Journal 7: 1933–1943. https://doi.org/10.1038/ismej.2013.89

Miller D.S. (1939). A study of the physiology of the sparrow thyroid. Journal of Experimental Zoology 80: 259–281. https://doi.org/10.1002/jez.1400800207

Pedersen H.K., Gudmundsdottir V., Nielsen H.B., Hyotylainen T., Nielsen T., Jensen B.A.H., Forslund K., Hildebrand F., Prifti E., Falony G., Le Chatelier E., Levenez F., Doré J., Mattila I., Plichta D.R., Pöhö P., Hellgren L.I., Arumugam M., Sunagawa S., Vieira-Silva S., Jørgensen T., Holm J.B., Trošt K., Consortium M., Kristiansen K., Brix S., Raes J., Wang J., Hansen T., Bork P., Brunak S., Oresic M., Ehrlich SD. & Pedersen O. (2016). Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535: 376–381. https://doi.org/10.1038/nature18646

Peig J. & Green A.J. (2009). New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos 118: 1883–1891. https://doi.org/10.1111/j.1600-0706.2009.17643.x

Rouffaer L.O., Strubbe D., Teyssier A., Salleh Hudin N., Van den Abeele A.-M., Cox I., Haesendonck R., Delmée M., Haesebrouck F., Pasmans F., Lens L. & Martel A. (2017). Effects of urbanization on host-pathogen interactions, using Yersinia in house sparrows as a model. PLoS ONE 12: e0189509. https://doi.org/10.1371/journal.pone.0189509

Rytkönen S., Vesterinen E.J., Westerduin C., Leviäkangas T., Vatka E., Mutanen M., Välimäki P., Hukkanen M., Suokas M. & Orell M. (2018). From feces to data: A metaborcoding method for analyzing consumed and available prey in a bird-insect food web. Ecology and Evolution 9: 631–639. https://doi.org/10.1002/ece3.4787

Schrimpe-Rutledge A.C., Codreanu S.G., Sherrod S.D. & McLean J.A. (2016). Untargeted metabolomics strategies – challenges and emerging directions. Journal of the American Society for Mass Spectrometry 27: 1897–1905. https://doi.org/10.1007/s13361-016-1469-y

Svensson L. (1992). Identification Guide to European Passerines. British Trust for Ornithology, Thetford, UK.

Swanson D.L. (2010). Seasonal metabolic variation in birds: functional and mechanistic correlates. In: Thompson C.F. (ed.) Current Ornithology. Vol. 17: 75–129. Springer, New York.

Tang Z.Z., Chen G., Hong Q., Huang S., Smith H.M., Shah R.D., Scholz M. & Ferguson J.F. (2019). Multi-omic analysis of the microbiome and metabolome in healthy subjects reveals microbiome-dependent relationships between diet and metabolites. Frontiers in Genetics 10: 454. https://doi.org/10.3389/fgene.2019.00454

Teyssier A., Lens L., Matthysen E. & White J. (2018a). Dynamics of gut microbiota diversity during the early development of an avian host: evidence from a cross-foster experiment. Frontiers in Microbiology 9: 1524. https://doi.org/10.3389/fmicb.2018.01524

Teyssier A., Rouffaer L. O., Saleh Hudin N., Strubbe D., Matthysen E., Lens L. & White J. (2018b). Inside the guts of the city: Urban-induced alterations of the gut microbiota in a wild passerine. The Science of the Total Environment 612: 1276–1286. https://doi.org/10.1016/j.scitotenv.2017.09.035

Treuren W.V. & Dodd D (2020). Microbial contribution to the human metabolome: implications for health and disease. The Annual Review of Pathology: Mechanisms of Disease 15: 345–69. https://doi.org/10.1146/annurev-pathol-020117-043559

Turnbaugh P.J., Hamady M., Yatsunenko T., Cantarel B.L., Duncan A., Ley R.E., Sogin M.L., Jones W.J., Roe B.A., Affourtit J.P., Egholm M., Henrissat B., Heath A.C., Knight R. & Gordon J.I. (2009). A core gut microbiome in obese and lean twins. Nature 457: 480–484. https://doi.org/10.1038/nature07540

van den Berg R.A., Hoefsloot H.C., Westerhuis J.A., Smilde A.K. & van der Werf M.J. (2006). Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 7: 142. https://doi.org/10.1186/1471-2164-7-142

Vanden Bussche J., Marzorati M., Laukens D. & Vanhaecke L. (2015). Validated high resolution mass spectrometry-based approach for metabolomic fingerprinting of the human gut phenotype. Analytical Chemistry 87: 10927–10934. https://doi.org/10.1021/acs.analchem.5b02688

van Dongen W.F., White J., Brandl H.B., Moodley Y., Merkling T., Leclaire S., Blanchard P., Danchin É., Hatch S.A. & Wagner R.H. (2013). Age-related differences in the cloacal microbiota of a wild bird species. BMC Ecology 13: 11. https://doi.org/10.1186/1472-6785-13-11

Van Meulebroek L., Bussche J.V., De Clercq N., Steppe K. & Vanhaecke L. (2015). A meta-bolomics approach to unravel the regulating role of phytohormones towards carotenoid metabolism in tomato fruit. Metabolomics 11: 667–683. https://doi.org/10.1007/s11306-014-0728-9

Van Meulebroek L., De Paepe E., Vercruysse V., Pomian B., Bos S., Lapauw B. & Vanhaecke L. (2017). Holistic lipidomics of the human gut phenotype using validated ultra-high-performance liquid chromatography coupled to hybrid orbitrap mass spectrometry. Analytical Chemistry 89: 12502–1251. https://doi.org/10.1021/acs.analchem.7b03606

Vel’ký M., Kaňuch P. & Krištín A. (2011). Food composition of wintering great tits (Parus major): habitat and seasonal aspects. Folia Zoologica 60: 228–236. https://doi.org/10.25225/fozo.v60.i3.a7.2011

Vernocchi P., Del Chierico F. & Putignani L. (2016). Gut microbiota profiling: metabolomics based approach to unravel compounds affecting human health. Frontiers in Microbiology 7: 1144. https://doi.org/10.3389/fmicb.2016.01144

Videvall E., Strandh M., Engelbrecht A., Cloete S. & Cornwallis C.K (2017). Measuring the gut microbiome in birds: Comparison of faecal and cloacal sampling. Molecular Ecology Resources 18: 424–434. https://doi.org/10.1111/1755-0998.12744

Visconti A., Le Roy C.I., Rosa F., Rossi N., Martin T.C., Mohney R.P., Li W., de Rinaldis E., Bell J.T., Venter J.C., Nelson K.E., Spector T.D. & Falchi M. (2019). Interplay between the human gut microbiome and host metabolism. Nature Communications 10: 4505. https://doi.org/10.1038/s41467-019-12476-z

Zierer J., Jackson M.A., Kastenmüller G., Mangino M., Long T., Telenti A., Mohney R.P., Small K.S., Bell J.T., Steves C.J., Valdes A.M., Spector T.D. & Menni C. (2018). The fecal metabolome as a functional readout of the gut microbiome. Nature Genetics 50: 790–795. https://doi.org/10.1038/s41588-018-0135-7

Downloads

Published

2020-10-06

How to Cite

Boonyarittichaikij, R., Pomian, B., Daan Dekeukeleire, D., Lens, L., Bonte, D., Verheyen, K., … Verbrugghe, E. (2020). Season as a discriminating factor for faecal metabolomic composition of great tits (Parus major). Belgian Journal of Zoology, 150. https://doi.org/10.26496/bjz.2020.79

Issue

Section

Articles