Complete mitochondrial genome of Whitmania laevis (Annelida, Hirudinea) and comparative analyses within Whitmania mitochondrial genomes

Authors

  • Fei Ye Co-Innovation Center for Qinba regions’ sustainable development, College of Life Science, Shaanxi Normal University, Xi’an, 710062
  • Ting Liu Co-Innovation Center for Qinba regions’ sustainable development, College of Life Science, Shaanxi Normal University, Xi’an, 710062
  • Wenbo Zhu Co-Innovation Center for Qinba regions’ sustainable development, College of Life Science, Shaanxi Normal University, Xi’an, 710062
  • Ping You Co-Innovation Center for Qinba regions’ sustainable development, College of Life Science, Shaanxi Normal University, Xi’an, 710062

DOI:

https://doi.org/10.26496/bjz.2015.52

Keywords:

Whitmania laevis, Whitmania acranulata, mitochondrial genome, comparative analyses, phylogenetics

Abstract

The complete mitochondrial genome of Whitmania laevis is 14,442 bp in length and contains 37 genes including 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, and two ribosomal RNA (rRNA) genes. The almost-complete mitochondrial genome of Whitmania acranulata, consisting of 13,494 bp, contains 35 genes including 13 PCGs, 20 tRNA genes, and two rRNA genes. COI phylogenetic analyses showed that the samples reported in GenBank and analysed as Hirudo nipponia KC667144, Hirudinaria manillensis KC688268 and Erpobdella octoculata KC688270 are not the named species and they should belong to Whitmania. We compared and analyzed the characteristics of nucleotide composition, codon usage, and secondary structures of 22 tRNAs and two rRNAs from Whitmania taxa. Moreover, we analyzed phylogenetic relationships of Annelida using maximum likelihood (ML) and Bayesian inference (BI) methods, based on 11 mitochondrial genes. Our results reveal that W. laevis has a close relationship with W. pigra.

References

Apakupakul K, Siddall ME & Burreson EM (1999). Higher level relationships of leeches (Annelida: Clitellata: Euhirudinea) based on morphology and gene sequences. Molecular Phylogenetics and Evolution, 12: 350–359.

Boore JL (1999). Animal mitochondrial genomes. Nucleic Acids Research, 27: 1767–1780.

Boore JL (2006). The use of genome-level characters for phylogenetic reconstruction. Trends in Ecology and Evolution, 21: 39–446.

Boore JL & Brown WM (2000). Mitochondrial genomes of Galathealinum, Helobdella, and Platynereis: Sequence and gene arrangement comparisons indicate that Pogonophora is not a phylum and Annelida and Arthropoda are not sister taxa. Molecular Biology and Evolution, 17: 87–106.

Borda E, Oceguera-Figueroa A & Siddall ME (2008). On the classification, evolution and biogeography of terrestrial haemadipsoid leeches (Hirudinida: Arhynchobdellida: Hirudiniformes). Molecular Phylogenetics and Evolution, 46: 142–154.

Borda E & Siddall ME (2004). Arhynchobdellida (Annelida: Oligochaeta: Hirudinida): phylogenetic relationships and evolution. Molecular Phylogenetics and Evolution, 30: 213–225.

Cannone JJ, Subramanian S, Schnare MN, Collett JR, D’Souza LM, Du Y, Feng B, Lin N, Madabusi LV, Müller KM, Pande N, Shang Z, Yu N & Gutell RR (2002). The Comparative RNA Web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics, 3: 2.

Domes K, Maraun M, Scheu S & Cameron SL (2008). The complete mitochondrial genome of the sexual oribatid mite Steganacarus magnus: genome rearrangements and loss of tRNAs. BMC Genomics, 9: 532.

Elson JL & Lightowlers RN (2006). Mitochondrial DNA clonality in the dock: can surveillance swing the case? Trends in Genetics, 22: 603–607.

Ferrier DE (2012). Evolutionary crossroads in developmental biology: annelids. Development, 139: 2643–2653.

Gissi C, Iannelli F & Pesole G (2008). Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity, 101: 301–320.

Grantham BA & Hann BJ (1994). Leeches (Annelida: Hirudinea) in the experimental lakes area, Northwestern Ontario, Canada: Patterns of species composition in relation to environment. Canadian Journal of Fisheries and Aquatic Sciences, 51: 1600–1607.

Jennings RM & Halanych KM (2005). Mitochondial genomes of Clymenella torquata (Maldanidae) and Rifta pachyprila (Siboglinidae): evidence for conserved gene order in Annelida. Molecular Biology and Evolution, 22: 210–222.

Kaygorodova IA & Mandzyak NB (2014). Molecular phylogeny of siberian Glossiphoniidae (Hirudinea). Molecular Biology, 48: 452–455.

Koperski P, Milanowski R & Krzyk A (2011). Searching for cryptic species in Erpobdella octoculata (L.) (Hirudinea: Clitellata): discordance between the results of genetic analysis and cross-breeding experiments. Contributions to Zoology, 80: 85–94.

Li T, Gao C, Cui Y, Xie Q & Bu W (2013). The Complete Mitochondrial Genome of the Stalk-Eyed Bug Chauliops fallax Scott, and the Monophyly of Malcidae (Hemiptera: Heteroptera). PLoS ONE, 8: e55381.

Librado P & Rozas J (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25: 1451–1452.

Liu N & Huang Y (2010). Complete mitochondrial genome sequence of Acrida cinerea (Acrididae: Orthoptera) and comparative analysis of mitochondrial genomes in Orthoptera. Comparative and Functional Genomics, 2010: 319486.

Lowe TM & Eddy SR (1997). tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research, 25: 955–964.

Marrec-Croq FL, Drago F, Vizioli J, Sautière PE & Lefebvre C (2013). The leech nervous system: A valuable model to study the microglia involvement in regenerative processes. Clinical and Developmental Immunology, 2013: 274019.

Perna NT & Kocher TD (1995). Patterns of nucleo-tide composition at fourfold degenerate sites of animal mitochondrial genomes. Journal of Molecular Evolution, 41: 353–358.

Phillips AJ & Siddall ME (2009). Poly-paraphyly of Hirudinidae: many lineages of medicinal leeches. BMC Evolutionary Biology, 9: 246.

Posada D & Crandall KA (1998). Modeltest: Testing the model of DNA substitution. Bioinformatics, 14: 817–818.

Ronquist F & Huelsenbeck JP (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19: 1572–1574.

Rouse GW & Fauchald K (1995). The articulation of annelids. Zoologica Scripta, 4: 269–301.

Rousset V, Pleijel F, Rouse GW, Erseus C & Siddali ME (2007). A molecular phylogeny of annelids. Cladistics, 23: 41–63.

Sakai M & Sakaizumi M (2012). The complete mitochondrial genome of Dugesia japonica (Platyhelminthes; Order Tricladida). Zoological Science, 29: 672–680.

Shen X, Ma X, Ren J & Zhao F (2009). A close phylogenetic relationship between Sipuncula and Annelida evidenced from the complete mitochondrial genome sequence of Phascosoma esculenta. BMC Genomics, 10: 136.

Shen X, Wu Z, Sun M, Ren J & Liu B (2011). The complete mitochondrial genome sequence of Whitmania pigra (Annelida, Hirudinea): The first representative from the class Hirudinea. Comparative Biochemistry and Physiology D, 6: 133–138.

Simon C, Buckley TR, Frati F, Stewart JB & Beckenbach AT (2006). Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA. Annual Review of Ecology Evolution and Systematics, 37: 545–579.

Staden R, Beal KF & Bonfield JK (2000). The Staden package, 1998. Methods in Molecular Biology, 132: 115–130.

Stamatakis A, Ludwig T & Meier H (2005). RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics, 21: 456–463.

Struck TH, Schult N, Kusen T, Hickman E, Bleidorn C, McHugh D & Halanych KM (2007). Annelid phylogeny and the status of Sipuncula and Echiura. BMC Evolutionary Biology, 7: 57.

Tamura K, Peterson D, Peterson N, Stecher G, Nei M & Kumar S (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28: 2731–2739.

Tan N (2007). Zoogeoraphy of Hirudinidae in China. Acta Scientiarum Naturalium Universitatis Sunyatseni, 46: 100–104.

Xu Y, Nie J & Xiao L (2013). Molecular evolution analysis of COI, 12S rRNA and 16S rRNA gene in six species of leech. Journal of Biology, 30: 10–13.

Ye F, King SD, Cone DK & You P (2014). The mitochondrial genome of Paragyrodactylus variegatus (Platyhelminthes: Monogenea): differen-ces in major non-coding region and gene order compared to Gyrodactylus. Parasites & Vectors, 7: 377.

Zhong M, Struck TH & Halanych KM (2008). Phylogenetic information from three mitochondrial genomes of Terebelliformia (Annelida) worms and duplication of the methionine tRNA. Gene, 416: 11–21.

Zhong M, Hansen B, Nesnidal M, Golombek A, Halanych KM & Struck TH (2011). Detecting the symplesiomorphy trap: a multigene phylogenetic analysis of terebelliform annelids. BMC Evolutionary Biology, 11: 369.

Zhang W, Zhang R, Li J, Liang F & Qian Z (2013). Species study on Chinese medicine leech and discussion on its resource sustainable utilization. China Journal of Chinese material medica, 38: 914–918.

Zhang DX & Hewitt GM (1997). Insect mitochondrial control region: a review of its structure, evolution and usefulness in evolutionary studies. Biochemical Systematics and Ecology, 25: 99–120.

Zrzavý J, Říha P, Piálek L & Janouškovec J (2009). Phylogeny of Annelida (Lophotrochozoa): total-evidence analysis of morphology and six genes. BMC Evolutionary Biology, 9: 189.

Downloads

Published

2020-01-13

How to Cite

Ye, F., Liu, T., Zhu, W., & You, P. (2020). Complete mitochondrial genome of Whitmania laevis (Annelida, Hirudinea) and comparative analyses within Whitmania mitochondrial genomes. Belgian Journal of Zoology, 145(2). https://doi.org/10.26496/bjz.2015.52

Issue

Section

Articles