Synergistic effects of dual parasitism in Daphnia magna under nutrient limitation
DOI:
https://doi.org/10.26496/bjz.2017.5Keywords:
energy allocation, food quality, host-parasite, synergismAbstract
Human-induced increases in the bioavailability of carbon (C), nitrogen (N) and phosphorus (P) have the potential to alter the context for host-parasite dynamics in aquatic ecosystems. Given that both eutrophication and infectious diseases are becoming more prominent, it is essential to disentangle the factors that determine virulence expression in keystone grazers. Here, we focus on the impact of nutrient limitation in single versus dual parasite exposure in the water flea Daphnia magna (Crustacea, Branchiopoda). For this, we fed specimens of D. magna with algae differing in C:N:P ratios and exposed them to two virulent parasites, Pasteuria ramosa (bacteria) and the agent causing White Fat Cell (WFCD, unknown classification), both in single and dual parasite exposure treatments. Exposure to the two parasites synergistically reduced host survival, mainly driven by WFCD exposure, especially under severe nutrient limitation. Under these conditions individuals of D. magna began reproducing earlier, which resulted in a higher reproductive output upon dual parasite exposure. We here discuss these results within the framework of host stress responses, nutrient allocation and energy budgets, and conclude that the way food quality interferes with host-parasite interactions varies, depending on the parasite species involved, the nutrient requirements of all actors and the trait investigated.References
Aalto S.L., Decaestecker E. & Pulkkinen K. (2015). A three-way perspective of stoichiometric changes on host-parasite interactions. Trends in Parasitology 31: 333–340. https://doi.org/10.1016/j.pt.2015.04.005
Abu Kwaik Y. & Bumann D. (2013). Microbial quest for food in vivo: ‘Nutritional virulence’ as an emerging paradigm. Cellular Microbiology 15: 882–890. https://doi.org/10.1111/cmi.12138
Acharya S., Kyle M. & Elser J.J. (2004). Biological stoichiometry of Daphnia growth: An ecophysiological test of the growth rate hypothesis. Limnology and Oceanography 49: 656–665. https://doi.org/10.4319/lo.2004.49.3.0656
Alizon S., de Roode J.C. & Michalakis Y. (2013). Multiple infections and the evolution of virulence. Ecology Letters 16: 556–567. https://doi.org/10.1111/ele.12076
Andersen T. & Hessen D.O. (1991). Carbon, nitrogen, and phosphorus content of freshwater zooplankton. Limnology and Oceanography 36: 807–814. https://doi.org/10.4319/lo.1991.36.4.0807
Bedhomme S., Agnew P., Sidobre C. & Michalakis Y. (2004). Virulence reaction norms across a food gradient. Proceedings of the Royal Society B: Biological Sciences 271: 739–744. https://doi.org/10.1098/rspb.2003.2657
Ben-Ami F., Mouton L., & Ebert D. (2008). The effect of multiple infections on the expression and evolution of virulence in a Daphnia-endoparasite system. Evolution 62: 1700–1711. https://doi.org/10.1111/j.1558-5646.2008.00391.x
Ben-Ami F., Rigaud T. & Ebert D. (2011). The expression of virulence during double infections by different parasites with conflicting host exploitation and transmission strategies. Journal of Evolutionary Biology 24: 1307–1316. https://doi.org/10.1111/j.1420-9101.2011.02264.x
Bliss C.I. (1939). The toxicity of poisons applied jointly. Annals of Applied Biology 26: 585–615. https://doi.org/10.1111/j.1744-7348.1939.tb06990.x
Boggs C.L. (2009). Understanding insect life histories and senescence through a resource allocation lens. Functional Ecology 23: 27–37. https://doi.org/10.1111/j.1365-2435.2009.01527.x
Carius H.J., Little T.J. & Ebert D. (2001). Genetic variation in a host-parasite association: potential for coevolution and frequency-dependent selection. Evolution 55: 1136–1145. https://doi.org/10.1111/j.0014-3820.2001.tb00633.x
Chadwick W. & Little T. (2005). A parasite-mediated life-history shift in Daphnia magna. Proceedings of the Royal Society B: Biological Sciences 272: 505–509. https://doi.org/10.1098/rspb.2004.2959
Coopman M. (2014). Context Dependency of host-parasite interactions. PhD thesis, KULeuven, Belgium.
Coopman M., Muylaert K., Lange B., Reyserhove L. & Decaestecker E. (2014). Context dependency of infectious disease: the cyanobacterium Microcystis aeruginosa decreases White Bacterial Disease in Daphnia magna. Functional Biology 59: 714 – 723. https://doi.org/10.1111/fwb.12298
Coors A. & De Meester L. (2008). Synergistic, antagonistic and additive effects of multiple stressors: predation threat, parasitism and pesticide exposure in Daphnia magna. Journal of Applied Ecology 45: 1820–1828. https://doi.org/10.1111/j.1365-2664.2008.01566.x
Cornet S., Bichet C., Larcombe S., Faivre B. & Sorci G. (2014). Impact of host nutritional status on infection dynamics and parasite virulence in a bird-malaria system. Journal of Animal Ecology 83: 256–265. https://doi.org/10.1111/1365-2656.12113
Cotner J.B., Hall E.K., Scott J.T. & Heldal M.K. (2010). Freshwater bacteria are stoichiometrically flexible with a nutrient composition similar to seston. Frontiers in Microbiology 1: 132. https://doi.org/10.3389/fmicb.2010.00132
Cressler C.E., Nelson W.A., Day T. & McCauley E. (2014). Starvation reveals the cause of infection-induced castration and gigantism. Proceedings of the Royal Society B: Biological Sciences 281: 1–9. https://doi.org/10.1098/rspb.2014.1087
Dallas T. & Drake J.M. (2014). Nitrate enrichment alters a Daphnia-microparasite interaction through multiple pathways. Ecology and Evolution 4: 243–250. https://doi.org/10.1002/ece3.925
Decaestecker E., Declerck S., De Meester L. & Ebert D. (2005). Ecological implications of parasites in natural Daphnia populations. Oecologia 144: 382–390. https://doi.org/10.1007/s00442-005-0083-7
Decaestecker E., Gaba S., Raeymaekers J.A.M., Stoks R., Van Kerckhoven L., Ebert D. & De Meester L. (2007). Host-parasite “Red Queen” dynamics archived in pond sediment. Nature 450: 870–873. https://doi.org/10.1038/nature06291
Decaestecker E., De Gersem H., Michalakis Y. & Raeymaekers J.A.M. (2013). Damped long-term host-parasite Red Queen coevolutionary dynamics: a reflection of dilution effects? Ecology Letters 16: 1455–1462. https://doi.org/10.1111/ele.12186
Decaestecker E., Verrydt D., De Meester L. & De Clerck S.A.J. (2015). Parasite and nutrient enrichment effects on Daphnia interspecific competition. Ecology 96: 1421–1430. https://doi.org/10.1890/14-1167.1
Declerck S.A.J., Vanderstukken M., Pals A., Muylaert K. & De Meester L. (2007). Plankton biodiversity along a gradient of productivity and its mediation by macrophytes. Ecology 88: 2199–2210. https://doi.org/10.1890/07-0048.1
DeMott W.R. & Van Donk E. (2013). Strong interactions between stoichiometric constraints and algal defenses: evidence from population dynamics of Daphnia and algae in phosphorus-limited microcosms. Oecologia 171: 175–186. https://doi.org/10.1007/s00442-012-2404-y
De Senerpont Domis L.N., Elser J.J., Gsell A.S., Huszar V.L.M., Ibelings B.W., Jeppesen E., Kosten S., Mooij W.M., Roland F., Sommer U., Van Donk E., Winder M. & Lürling M. (2013). Plankton dynamics under different climatic conditions in space and time. Functional Biology 58: 463–482. https://doi.org/10.1111/fwb.12053
Duncan A.B., Agnew P., Noel V. & Michalakis Y. (2015). The consequences of co-infections for parasite transmission in the mosquito Aedis aegypti. Journal of Animal Ecology 84: 498–508. https://doi.org/10.1111/1365-2656.12302
Duffy M.A., James T.Y. & Longworth A. (2015). Ecology, virulence, and phylogeny of Blastulidium paedophthorum, a widespread brood parasite of Daphnia spp. Applied and Environmental Microbiology 81: 5486–5496. https://doi.org/10.1128/AEM.01369-15
Duneau D., Luijckx P., Ruder L.F. & Ebert D. (2012). Sex-specific effects of a parasite evolving in a female-biased host population. BMC Biology 104. https://doi.org/10.1186/1741-7007-10-104
Ebert D. (2005). Chapter 3, some parasites of Daphnia. In: Ebert D. (ed.) Ecology, epidemiology and evolution of parasitism in Daphnia. Bethesda (MD), National Center for Biotechnology information, US. Available from http://www.ncbi.nlm.nih.gov/books/NBK2043 [accessed 24 May 2017].
Ebert D., Carius H.J., Little T. & Decaestecker E. (2004). The evolution of virulence when parasites cause host castration and gigantism. American Naturalist 164: S19–S32. https://doi.org/10.1086/424606
Elser J.J., Stabler B.L. & Hassett P.R. (1995). Nutrient limitation of bacterial growth and rates of bacterivory in lakes and oceans: a comparative study. Aquatic Microbial Ecology 9: 105–110. https://doi.org/10.3354/ame009105
Elser J.J., Brien W.J.O., Dobberfuhl D.R. & Dowling T.E. (2000). The evolution of ecosystem processes: growth rate and elemental stoichiometry of a key herbivore in temperate and arctic habitats. Journal of Evolutionary Biology 13: 845–853. https://doi.org/10.1046/j.1420-9101.2000.00215.x
Elser J.J., Acharya K., Kyle M., Cotner J., Makino W., Markow T., Watts T., Hobbie S., Fagan W., Schade J., Hood J. & Sterner R.W. (2003). Growth rate-stoichiometry couplings in diverse biota. Ecology Letters 6: 936–943. https://doi.org/10.1046/j.1461-0248.2003.00518.x
Eswarappa S.M., Estrela S. & Brown S.P. (2012). Within-host dynamics of multi-species infections: facilitation, competition and virulence. PLoS ONE 7: e38730. https://doi.org/10.1371/journal.pone.0038730
Fellous S. & Koella J.C. (2009). Infectious dose affects the outcome of the within-host competition between parasites. American Naturalist 173: E117–E184. https://doi.org/10.1086/598490
Ferguson H.M. & Read A.F. (2002). Genetic and environmental determinants of malaria parasite virulence in mosquitoes. Proceedings of the Royal Society B: Biological Sciences 269: 1217–1224. https://doi.org/10.1098/rspb.2002.2023
Frost P.C., Benstead J.P., Cross W.F., Hillebrand H., Larson J.H., Xenopoulos M.A. & Yoshida T. (2006). Treshold elemental ratios of carbon and phosphorus in aquatic consumers. Ecology Letters 9: 774–779. https://doi.org/10.1111/j.1461-0248.2006.00919.x
Frost P.C., Ebert D. & Smith V.H. (2008). Responses of a bacterial pathogen to phosphorus limitation of its aquatic invertebrate host. Ecology 89: 313–318. https://doi.org/10.1890/07-0389.1
Geerts A., De Meester L. & Stoks R. (2014). Heat tolerance and its evolutionary potential along a latitudinal gradient in Daphnia magna. Evolutionary Ecology Research 16: 517–528.
Graham A.L. (2008). Ecological rules governing helminth-microparasite coinfection. PNAS, 105: 566–570. https://doi.org/10.1073/pnas.0707221105
Griffiths E.C., Pedersen A.B., Fenton A. & Petchey O.L. (2015). Analysis of a summary network of co-infection in humans reveals that parasites interact most via shared resources. Proceedings of the Royal Society B – Biological Sciences 281. https://doi.org/10.1098/rspb.2013.2286
Hall S.R., Simonis J.L., Nisbet R.M., Tessier A.J. & Caceres C.E. (2009). Resource ecology of virulence in a planktonic host-parasite system: an explanation using dynamic energy budgets. American Naturalist 174: 149–162. https://doi.org/10.1086/600086
Hessen D.O. & Lyche A. (1991). Inter- and intraspecific variations in zooplankton element compostion. Archiv für Hydrobiologie 121: 343–353.
Izhar R., Routtu J. & Ben-Ami F. (2015). Host age modulates within-host parasite competition. Biology Letters 11: 20150131. https://doi.org/10.1098/rsbl.2015.0131
Jansen M., Stoks R., Decaestecker E., Coors A., Van De Meutter F. & De Meester L. (2010). Local exposure shapes spatial patterns in infectivity and community structure of Daphnia parasites. Journal of Animal Ecology 79: 1023–1033. https://doi.org/10.1111/j.1365-2656.2010.01718.x
Jeyasingh P.D., Weider L.J. & Sterner R.W. (2009). Genetically-based trade-offs in response to stoichiometric food quality influence competition in a keystone aquatic herbivore. Ecology Letters 12: 1229–1237. https://doi.org/10.1111/j.1461-0248.2009.01368.x
Kapari L., Haukioja E., Rantala M.J. & Ruuhola T. (2006). Defoliating insect immune defense interacts with induced plant defense during a population outbreak. Ecology 87: 291–296. https://doi.org/10.1890/05-0362
Klemola N., Klemola T., Rantala M.J. & Ruuhola T. (2007). Natural host- plant quality affects immune defence of an insect herbivore. Entomologia Experimentalis et Applicata 123: 167–176. https://doi.org/10.1111/j.1570-7458.2007.00533.x
Lafferty K.D., Allesina S., Arim M., Briggs C.J., De Leo G., Dobson A.P., Dunne A.J., Johnson P.T.J., Kuris A.M., Marcogliese D.J., Martinez N.D., Memmott J., Marquet P.A., McLaughlin J.P., Mordecai E.A., Pascual M., Poulin R. & Thieltges D.W. (2008). Parasites in food webs: the ultimate missing links. Ecology Letters 11: 533–546. https://doi.org/10.1111/j.1461-0248.2008.01174.x
Lambrechts L., Chavatte J.-M., Snounou G. & Koella J.C. (2006). Environmental influence on the genetic basis of mosquito resistance to malaria parasites. Proceedings of the Royal Society B: Biological Sciences 273: 1501–1506. https://doi.org/10.1098/rspb.2006.3483
Lange B., Reuter M., Ebert D., Muylaert K. & Decaestecker E. (2014). Diet quality determines interspecific parasite interactions in host populations. Ecology and Evolution 4: 3093–3102. https://doi.org/10.1002/ece3.1167
Little T.J. & Killick S.C. (2007). Evidence for a cost of immunity when the crustacean Daphnia magna is exposed to the bacterial pathogen Pasteuria ramosa. Journal of Animal Ecology 76: 1202–1207. https://doi.org/10.1111/j.1365-2656.2007.01290.x
Lopes I., Baird D.J. & Ribeiro R. (2004). Genetic determination of tolerance to lethal and sublethal copper concentrations of field populations of Daphnia longispina. Archives of Environmental Contamination and Toxicolocy 46: 43–51. https://doi.org/10.1007/s00244-003-2143-5
Mideo N. (2009). Parasite adaptations to within-host competition. Trends in Parasitology 25: 261–268. https://doi.org/10.1016/j.pt.2009.03.001
Metzger C.M.J.A, Luijckx P., Bento G., Mariadassou M. & Ebert D. (2016). The Red Queen lives: Epistatis between linked resistance loci. Evolution 70: 480–487. https://doi.org/10.1111/evo.12854
Ojala K., Julkunen-Tiitto R., Lindström L. & Mappes J. (2005). Diet affects the immune defence and life-history traits of an Arctiid moth Parasemia plantaginis. Evolutionary Ecology Research 7: 1153–1170.
Pederson A.B. & Fenton A. (2007). Emphasizing the ecology in parasite community ecology. Trends in Ecology and Evolution 22: 133–139. https://doi.org/10.1016/j.tree.2006.11.005
Penczykowski R.M., Lane A.L. & Koskella B. (2016). Understanding the ecology and evolution of host-parasite interactions across scales. Evolutionary Applications 9: 37–52. https://doi.org/10.1111/eva.12294
Pietrzak B., Grzesiuk M. & Bednarska A. (2010). Food quantity shapes life history and survival strategies in Daphnia magna (Cladocera). Hydrobiologia 643: 51–54. https://doi.org/10.1007/s10750-010-0135-9
Ponce-Soto G.Y., Aguirre-von-Wobeser E., Eguiarte L.E., Elser J.J., Lee Z.M.-P. & Souza V. (2015). Enrichment experiment changes microbial interactions in an ultra-oligotrophic environment. Frontiers in Microbiology 6: 246. https://doi.org/10.3389/fmicb.2015.00246
Preston D.L. & Johnson P.T.J. (2010). Ecological consequences of parasitism. Nature Education Knowledge 3: 47.
Regoes R.R., Hottinger J.W., Sygnarski L. & Ebert D. (2003). The infection rate of Daphnia magna by Pasteuria ramosa conforms with the mass-action principle. Epidemiology & Infection 131: 957–966. https://doi.org/10.1017/S0950268803008793
Sarpe D., De Senerpont Domis L.N., Declerck S.A.J., Van Donk E. & Ibelings B.W. (2014). Food quality dominates the impact of food quantity on Daphnia life history: possible implications for re-oligotrophication. Inland Waters 4: 363–368. https://doi.org/10.5268/IW-4.4.701
Schmid-Hempel P. (2011). Evolutionary parasitology: the integrated study of infection, immunology, ecology and genetics. Oxford University Press, Oxford, United Kingdom.
Schoebel C.N., Auld S.K.J.R., Spaak P. & Little T.J. (2014). Effects of juvenile host density and food availability on adult immune response, parasite resistance and virulence in a Daphnia-parasite system. PLoS One 9: 1–9. https://doi.org/10.1371/journal.pone.0094569
Seppälä O., Liljeroos K., Karvonen A. & Jokela J. (2008). Host condition as a constraint for parasite reproduction. Oikos 117: 749–753. https://doi.org/10.1111/j.0030-1299.2008.16396.x
Smith V.H. & Holt R.D. (1996). Resource competition and within-host dynamics. Trends in Ecology and Evolution 11: 386–398. https://doi.org/10.1016/0169-5347(96)20067-9
Søndergaard M., Jensen J.P. & Jeppesen E. (1999). Internal phosphorus loading in shallow Danisch lakes. Hydrobiologia 408–409: 145–152. https://doi.org/10.1023/A:1017063431437
Sterner R.W., Hagemeier D.W., Smith W.L. & Smith R.F. (1993). Phytoplankton nutrient limitation and food quality for Daphnia. Limnology and Oceanography 38: 857–871. https://doi.org/10.4319/lo.1993.38.4.0857
Sterner R.W. (2008). On the phosphorus limitation paradigm for lakes. International Review of Hydrobiology 93: 433–445. https://doi.org/10.1002/iroh.200811068
Stibor H. (1992). Predator induced life history shifts in a freshwater cladoceran. Oecologia 92: 162–165. https://doi.org/10.1007/BF00317358
Vale P.F., Choisy M. & Little T. (2013). Host nutrition alters the variance in parasite transmission potential. Biology Letters 9: 1–5. https://doi.org/10.1098/rsbl.2012.1145
Verreydt D., De Meester L., Decaestecker E., Villena M.-J., Van Der Gucht K., Vannormelingen P., Vyverman W. & Declerck S.A.J. (2012). Dispersal-mediated trophic interactions can generate apparent patterns of dispersal limitation in aquatic communities. Ecology Letters 15: 218–226. https://doi.org/10.1111/j.1461-0248.2011.01728.x
Wolinska J., Giessler S. & Koerner H. (2009). Molecular identification and hidden diversity of novel Daphnia parasites for European lakes. Applied and Environmental Microbiology 75: 7051. https://doi.org/10.1128/AEM.01306-09
Downloads
Published
How to Cite
Issue
Section
License
All published papers will be put on-line as high resolution PDF’s. Copyright thus remains with the authors. All manuscripts will be licensed under a Creative Commons Attribution 3.0 License https://creativecommons.org/licenses/by/4.0/.