A 3D quantitative method for analyzing bone mineral densities: a case study on skeletal deformities in the gilthead sea bream, Sparus aurata (Linnaeus, 1758)
DOI:
https://doi.org/10.26496/bjz.2018.24Keywords:
bone mineralization density, opercular deformities, micro-CT, Sparus aurataAbstract
Skeletal deformities, one of the major threats for aquaculture, have been studied extensively. These include opercular malformations in gilthead sea bream (Sparus aurata), a key fish species for Mediterranean aquaculture. What is causing it and at what morphogenetic level it arises, however, is still unclear. Here we focus on bone formation, at the level of bone mineralization. Several methods have been used to study bone mineralization density (BMD), however, these are frequently limited when targeting a high-resolution, three-dimensional mapping of BMD. We used micro-computed tomography (micro-CT) data to perform such a 3D quantification of BMD levels in gilthead sea bream that showed different levels of opercular bone deformations. This approach has the advantage of not having to rely on calibration phantoms, as long as relative BMD values are needed. The results show an increased BMD in deformed opercles compared to normal ones, especially in a bilaterally-deformed specimen. Furthermore, we show that opercular deformations are not necessarily associated with similar mineralization patterns in other mineralized cranial elements, except for the otoliths. Also, mineralization seems to occur left-right independently, matching earlier observations of such an independency of the opercular phenotype as a whole. This study confirms that a quantitative characterization of BMD patterns in 3D is feasible, even in smaller specimens, and that it has several advantages over other commonly used approaches.References
Andrades J.A., Becerra J. & Fernández-Llebrez P. (1996). Skeletal deformities in larval, juvenile and adult stages of cultured gilthead sea bream (Sparus aurata L.). Aquaculture 141(1–2): 1–11. https://doi.org/10.1016/0044-8486(95)01226-5
Andreeva V., Connolly M.H., Stewart-Swift C., Fraher D., Burt J., Cardarelli J. & Yelick P.C. (2011). Identification of adult mineralized tissue zebrafish mutants. Genesis 49 (4): 360–366. https://doi.org/10.1002/dvg.20712
Asharani P.V., Keupp K., Semler O., Wang W.S., Li Y., Thiele H., Yigit G., Pohl E., Becker J., Frommolt P., Sonntag C., Altmuller J., Zimmermann K., Greenspan D.S., Akarsu N.A., Netzer C., Schonau E., Wirth R., Hammerschmidt M., Nurnberg P., Wollnik B. & Carney T.J. (2012). Attenuated BMP1 function compromises osteogenesis, leading to bone fragility in humans and zebrafish. American Journal of Human Genetics 90 (4): 661–674. https://doi.org/10.1016/j.ajhg.2012.02.026
Bensimon-Brito A., Cardeira J., Dionisio G., Huysseune A., Cancela M.L. & Witten P.E. (2016). Revisiting in vivo staining with alizarin red S – a valuable approach to analyse zebrafish skeletal mineralization during development and regeneration. BMC Developmental Biology 16: 2. https://doi.org/10.1186/s12861-016-0102-4
Beraldo P. & Canavese B. (2011). Recovery of opercular anomalies in gilthead sea bream, Sparus aurata L.: morphological and morphometric analysis. Journal of Fish Diseases 34 (1): 21–30. https://doi.org/10.1111/j.1365-2761.2010.01206.x
Beraldo P., Pinosa M., Tibaldi E. & Canavese B. (2003). Abnormalities of the operculum in gilthead sea bream (Sparus aurata): morphological description. Aquaculture 220 (1–4): 89–99. https://doi.org/10.1016/S0044-8486(02)00416-7
Boglione C., Gagliardi F., Scardi M. & Cataudella S. (2001). Skeletal descriptors and quality assessment in larvae and post-larvae of wild-caught and hatchery-reared gilthead sea bream (Sparus aurata L. 1758). Aquaculture 192 (1): 1–22. https://doi.org/10.1016/S0044-8486(00)00446-4
Boglione C., Gisbert E., Gavaia P., E. Witten P., Moren M., Fontagné S. & Koumoundouros G. (2013a). Skeletal anomalies in reared European fish larvae and juveniles. Part 2: main typologies, occurrences and causative factors. Reviews in Aquaculture 5: S121–S167. https://doi.org/10.1111/raq.12016
Boglione C., Paulo G., Giorgos K., Gisbert E., Moren M., Stephanie F. & Witten P.E. (2013b). Skeletal anomalies in reared European fish larvae and juveniles. Part 1: normal and anomalous skeletogenic processes. Reviews in Aquaculture 5: S99–S120. https://doi.org/10.1111/raq.12015
Bruneel B. & Witten P.E. (2015). Power and challenges of using zebrafish as a model for skeletal tissue imaging. Connective Tissue Research 56 (2): 161–173. https://doi.org/10.3109/03008207.2015.1013193
Burr D.B. (2002). Bone material properties and mineral matrix contributions to fracture risk or age in women and men. Journal of Musculoskeletal and Neuronal Interactions 2 (3): 201–204.
Camp A.L. & Brainerd E.L. (2015). Reevaluating musculoskeletal linkages in suction-feeding fishes with X-Ray Reconstruction of Moving Morphology (XROMM). Integrative and Comparative Biology 55 (1): 36–47. https://doi.org/10.1093/icb/icv034
Campbell G.M. & Sophocleous A. (2014). Quantitative analysis of bone and soft tissue by micro-computed tomography: applications to ex vivo and in vivo studies. BoneKEy Reports 3: 564. https://doi.org/10.1038/bonekey.2014.59
Castro J., Pino-Querido A., Hermida M., Chavarrías D., Romero R., García-Cortés L.A., Toro M.A. & Martínez P. (2008). Heritability of skeleton abnormalities (lordosis, lack of operculum) in gilthead seabream (Sparus aurata) supported by microsatellite family data. Aquaculture 279 (1–4): 18–22. https://doi.org/10.1016/j.aquaculture.2008.04.023
Celenk C. & Celenk P. (2012). Bone density measurement using computed tomography. In: Saba L. (eds) Computed Tomography-Clinical Applications: 123–136. IntechOpen, Rijeka, Croatia. https://doi.org/10.5772/22884
Connolly M.H. & Yelick P.C. (2010). High-throughput methods for visualizing the teleost skeleton: capturing autofluorescence of alizarin red. Journal of Applied Ichthyology 26 (2): 274–277. https://doi.org/10.1111/j.1439-0426.2010.01419.x
Daoulas C., Economou AN & Bantavas I. (1991). Osteological abnormalities in laboratory reared sea-bass (Dicentrarchus labrax) fingerlings. Aquaculture 97 (2): 169–180. https://doi.org/10.1016/0044-8486(91)90263-7
Darias M.J., Mazurais D., Koumoundouros G., Le Gall M.M., Huelvan C., Desbruyeres E., Quazuguel P., Cahu C.L. & Zambonino-Infante J.L. (2011). Imbalanced dietary ascorbic acid alters molecular pathways involved in skeletogenesis of developing European sea bass (Dicentrarchus labrax). Comparative Biochemistry and Physiology – Part A: Molecular & Integrative Physiology 159 (1): 46–55. https://doi.org/10.1016/j.cbpa.2011.01.013
Debusschere E., Hostens K., Adriaens D., Ampe B., Botteldooren D., De Boeck G., De Muynck A., Sinha A.K., Vandendriessche S., Van Hoorebeke L., Vincx M. & Degraer S. (2016). Acoustic stress responses in juvenile sea bass Dicentrarchus labrax induced by offshore pile driving. Environmental Pollution 208 (B): 747–757. https://doi.org/10.1016/j.envpol.2015.10.055
Deuerling J.M., Rudy D.J., Niebur G.L. & Roeder R.K. (2010). Improved accuracy of cortical bone mineralization measured by polychromatic microcomputed tomography using a novel high mineral density composite calibration phantom. Medical Physics 37 (9): 5138–5145. https://doi.org/10.1118/1.3480507
Divanach P., Boglione C., Menu B., Koumoundouros G., Kentouri M. & Cataudella S. (1996). Abnormalities in finfish mariculture: an overview of the problem, causes and solutions. In: Chatain B., Saroglia M., Sweetman J. & Lavens L. (eds) Handbook of Contributions and Short Communications presented at the International Workshop on “Seabass and Seabream Culture: Problems and Prospects” Verona, Italy, October 16–18, 1996: 45–66. European Aquaculture Society, Oostende, Belgium.
Efimova O.I., Khlebnikov A.S., Senin R.A., Voronin P.A. & Anokhin K.V. (2013). Contrasting of biological samples for X-Ray synchrotron microtomography. Bulletin of Experimental Biology and Medicine 155 (4): 413–416.
Faustino M. & Power D.M. (2001). Osteologic development of the viscerocranial skeleton in sea bream: alternative ossification strategies in teleost fish. Journal of Fish Biology 58: 537–572. https://doi.org/10.1111/j.1095-8649.2001.tb02272.x
Fernández I., Hontoria F., Ortiz-Delgado J.B., Kotzamanis Y., Estévez A., Zambonino-Infante J.L. & Gisbert E. (2008). Larval performance and skeletal deformities in farmed gilthead sea bream (Sparus aurata) fed with graded levels of Vitamin A enriched rotifers (Brachionus plicatilis). Aquaculture 283 (1–4): 102–115. https://doi.org/10.1016/j.aquaculture.2008.06.037
Fisher S., Jagadeeswaran P. & Halpern M.E. (2003). Radiographic analysis of zebrafish skeletal defects. Developmental Biology 264 (1): 64–76.
Fontagne S., Silva N., Bazin D., Ramos A., Aguirre P., Surget A., Abrantes A., Kaushik S.J. & Power D.M. (2009). Effects of dietary phosphorus and calcium level on growth and skeletal development in rainbow trout (Oncorhynchus mykiss) fry. Aquaculture 297 (1–4): 141–150. https://doi.org/10.1016/j.aquaculture.2009.09.022
Francescon A., Freddi A., Barbaro A. & Giavenni R. (1988). Daurade Sparus aurata L. reproduite artificiellement et daurade sauvage. Expériences paralleles en diverses conditions d’élevage. Aquaculture 72 (3–4): 273–285. https://doi.org/10.1016/0044-8486(88)90216-5
Fraser M.R. & De Nys R. (2005). The morphology and occurrence of jaw and operculum deformities in cultured barramundi (Lates calcarifer) larvae. Aquaculture 250: 496–503. https://doi.org/10.1016/j.aquaculture.2005.04.067
Galeotti M., Beraldo P., De Dominis S., D’Angelo L., Ballestrazzi R., Musetti R., Pizzolito S. & Pinosa M. (2000). A preliminary histological and ultrastructural study of opercular ano-malies in gilthead sea bream larvae (Sparus aurata). Fish Physiology and Biochemistry 22 (2): 151–157. https://doi.org/10.1023/A:1007883008076
Gignac P.M., Kley N.J., Clarke J.A., Colbert M.W., Morhardt A.C., Cerio D., Cost I.N., Cox P.G., Daza J.D., Early C.M., Echols M.S., Henkelman R.M., Herdina A.N., Holliday C.M., Li Z., Mahlow K., Merchant S., Muller J., Orsbon C.P., Paluh D.J., Thies M.L., Tsai H.P. & Witmer L.M. (2016). Diffusible iodine-based contrast-enhanced computed tomography (diceCT): an emerging tool for rapid, high-resolution, 3-D imaging of metazoan soft tissues. Journal of Anatomy 228 (6): 889–909. https://doi.org/10.1111/joa.12449
Glimcher M.J. (1998). Chapter 2 – The Nature of the Mineral Phase in Bone: Biological and Clinical Implications A2 – Avioli, Louis V. In: Krane S.M. (ed.) Metabolic Bone Disease and Clinically Related Disorders (3rd edition): 23–52e. Academic Press, San Diego.
Haga Y., Suzuki T., Kagechika H. & Takeuchi T. (2003). A retinoic acid receptor-selective agonist causes jaw deformity in the Japanese flounder, Paralichthys olivaceus. Aquaculture 221 (1–4): 381–392. https://doi.org/10.1016/S0044-8486(03)00076-0
Holmes G. (2012). The role of vertebrate models in understanding craniosynostosis. Child’s Nervous System 28 (9): 1471–1481. https://doi.org/10.1007/s00381-012-1844-3
Hosen M.J., Vanakker O., Willaert A., Huysseune A., Coucke P. & De Paepe A. (2013). Zebrafish models for ectopic mineralization disorders: practical issues from morpholino design to post-injection observations. Frontiers in Genetics 4 (74): 1–17. https://doi.org/10.3389/fgene.2013.00074
Hunt von Herbing I., Miyake T., Hall B.K. & Boutilier R.G. (1996). Ontogeny of feeding and respiration in larval Atlantic cod Gadus morhua (Teleostei, Gadiformes): I. Morphology. Journal of Morphology 227: 15–35. https://doi.org/10.1002/(SICI)1097-4687(199601)227:1<37::AID-JMOR3>3.0.CO;2-M
Koumoundouros G. (2010). Morpho-anatomical abnormalities in Mediterranean marine aquaculture. In: Koumoundouros G. (ed.) Recent Advances in Aquaculture Research: 125–148. Transworld Research Network, Kerala, India.
Koumoundouros G., Gagliardi F., Divanach P., Boglione C., Cataudella S. & Kentouri M. (1997a). Normal and abnormal osteological development of caudal fin in Sparus aurata L. fry. Aquaculture 149 (3–4): 215–226. https://doi.org/10.1016/S0044-8486(96)01443-3
Koumoundouros G., Oran G., Divanach P., Stefanakis S. & Kentouri M. (1997b). The opercular complex deformity in intensive gilthead sea bream (Sparus aurata L.) larviculture. Moment of apparition and description. Aquaculture 156 (1–2): 165–177. https://doi.org/10.1016/S0044-8486(97)89294-0
Lall S.P. & Lewis-McCrea L.M. (2007). Role of nutrients in skeletal metabolism and pathology in fish — An overview. Aquaculture 267 (1–4): 3–19. https://doi.org/10.1016/j.aquaculture.2007.02.053
Mahamid J., Aichmayer B., Shimoni E., Ziblat R., Li C.H., Siegel S., Paris O., Fratzl P., Weiner S. & Addadi L. (2010). Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays. Proceedings of the National Academy of Sciences of the United States of America 107 (14): 6316–6321. https://doi.org/10.1073/pnas.0914218107
Masschaele B.C., Cnudde V., Dierick M., Jacobs P., Van Hoorebeke L. & Vlassenbroeck J. (2007). UGCT: New X-ray radiography and tomography facility. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 580 (1): 266–269. https://doi.org/10.1016/j.nima.2007.05.099
Morel C., Adriaens D., Boone M., De Wolf T., Van Hoorebeke L. & Sorgeloos P. (2010). Visualizing mineralization in deformed opercular bones of larval gilthead sea bream (Sparus aurata). Journal of Applied Ichthyology 26 (2): 278–279. https://doi.org/10.1111/j.1439-0426.2010.01420.x
Neues F. & Epple M. (2008). X-ray microcomputer tomography for the study of biomineralized endo- and exoskeletons of animals. Chemical Reviews 108 (11): 4734–4741. https://doi.org/10.1021/cr078250m
Nordvik K., Kryvi H., Totland G.K. & Grotmol S. (2005). The salmon vertebral body develops through mineralization of two preformed tissues that are encompassed by two layers of bone. Journal of Anatomy 206 (2): 103–114. https://doi.org/10.1111/j.1469-7580.2005.00372.x
Ortiz-Delgado J.B., Fernández I., Sarasquete C. & Gisbert E. (2014). Normal and histopathological organization of the opercular bone and vertebrae in gilthead sea bream Sparus aurata. Aquatic Biology 21 (1): 67–84. https://doi.org/10.3354/ab00568
Osse J.W.M. (1969). Functional morphology of the head of the perch (Perca fluviatilis L.): an electromyographical study. Netherlands Journal of Zoology 19 (3): 289–392.
Paperna I. (1978). Swimbladder and skeletal deformations in hatchery bred Sparus aurata. Journal of Fish Biology 12 (2): 109–114. https://doi.org/10.1111/j.1095-8649.1978.tb04157.x
Parkinson I.H., Badiei A. & Fazzalari N.L. (2008). Variation in segmentation of bone from micro-CT imaging: implications for quantitative morphometric analysis. Australasian Physical & Engineering Sciences in Medicine 31 (2): 160–164. https://doi.org/10.1007/BF03178592
Prestinicola L., Boglione C., Makridis P., Spanò A., Rimatori V., Palamara E., Scardi M. & Cataudella S. (2013). Environmental conditioning of skeletal anomalies typology and frequency in gilthead seabream (Sparus aurata L., 1758) juveniles. PLoS ONE 8 (2): e55736. https://doi.org/10.1371/journal.pone.0055736
Prestinicola L., Boglione C. & Cataudella S. (2014). Relationship between uninflated swim bladder and skeletal anomalies in reared gilthead seabream (Sparus aurata). Aquaculture 432: 462–469. https://doi.org/10.1016/j.aquaculture.2014.06.020
Puchtler H., Meloan S.N. & Terry M.S. (1969). On the history and mechanism of alizarin and alizarin red S stains for calcium. Journal of Histochemistry and Cytochemistry 17 (2): 110–124. https://doi.org/10.1177/17.2.110
Rauch F. & Schoenau E. (2002). Skeletal development in premature infants: a review of bone physiology beyond nutritional aspects. Archives of Disease in Childhood - Fetal and Neonatal Edition 86 (2): F82–F85.
Shkil F.N., Stolero B., Sutton G.A., Abdissa B.B., Dmitriev S.G. & Shahar R. (2014). Effects of thyroid hormone treatment on the mineral density and mechanical properties of the African barb (Labeobarbus intermedius) skeleton. Journal of Applied Ichthyology 30 (4): 814–820. https://doi.org/10.1111/jai.12537
Thuong N.P., Verstraeten B., Kegel B.D., Christiaens J., Wolf T.D., Sorgeloos P., Bonte D. & Adriaens D. (2017). Ontogenesis of opercular deformities in gilthead sea bream Sparus aurata: a histological description. Journal of Fish Biology 91 (5): 1419–1434. https://doi.org/10.1111/jfb.13460
Totland G.K., Fjelldal P.G., Kryvi H., Løkka G., Wargelius A., Sagstad A., Hansen T. & Grotmol S. (2011). Sustained swimming increases the mineral content and osteocyte density of salmon vertebral bone. Journal of Anatomy 219 (4): 490–501. https://doi.org/10.1111/j.1469-7580.2011.01399.x
Turner C.H. (2006). Bone strength: current concepts. Annals of the New York Academy of Sciences 1068 (1): 429–446.
Van Wassenbergh S. (2015). A solution strategy to include the opening of the opercular slits in moving-mesh CFD models of suction feeding. Integrative and Comparative Biology 55 (1): 62–73. https://doi.org/10.1093/icb/icv031
Verhaegen Y., Adriaens D., Wolf T.D., Dhert P. & Sorgeloos P. (2007). Deformities in larval gilthead sea bream (Sparus aurata): A qualitative and quantitative analysis using geometric morphometrics. Aquaculture 268 (1–4): 156–168. https://doi.org/10.1016/j.aquaculture.2007.04.037
Villeneuve L., Gisbert E., Delliou H.L., Cahu C.L. & Zambonino-Infante J.L. (2005). Dietary levels of all-trans retinol affect retinoid nuclear receptor expression and skeletal development in European sea bass larvae. British Journal of Nutrition 93 (6): 791–801.
Vlassenbroeck J., Dierick M., Masschaele B., Cnudde V., Van Hoorebeke L. & Jacobs P. (2007). Software tools for quantification of X-ray microtomography at the UGCT. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 580 (1): 442–445. https://doi.org/10.1016/j.nima.2007.05.073
Wagner R., Van Loo D., Hossler F., Czymmek K., Pauwels E. & Van Hoorebeke L. (2011). High-resolution imaging of kidney vascular corrosion casts with nano-CT. Microscopy and Microanalysis 17 (2): 215–219. https://doi.org/10.1017/S1431927610094201
Walker M.B. & Kimmel C.B. (2007). A two-color acid-free cartilage and bone stain for zebrafish larvae. Biotechnic & Histochemistry 82 (1): 23–28. https://doi.org/10.1080/10520290701333558
Witten P.E. & Huysseune A. (2009). A comparative view on mechanisms and functions of skeletal remodelling in teleost fish, with special emphasis on osteoclasts and their function. Biological Reviews 84 (2): 315–346. https://doi.org/10.1111/j.1469-185X.2009.00077.x
Witten P.E., Owen M.A., Fontanillas R., Soenens M., McGurk C. & Obach A. (2016). A primary phosphorus-deficient skeletal phenotype in juvenile Atlantic salmon Salmo salar: the uncoupling of bone formation and mineralization. Journal of Fish Biology 88 (2): 690–708. https://doi.org/10.1111/jfb.12870
Yelick P.C. & Connolly M.H. (2010). A forward genetic screen for genes regulating mineralized tooth and bone formation in zebrafish (Danio rerio). Journal of Applied Ichthyology 26 (2): 192–195. https://doi.org/10.1111/j.1439-0426.2010.01403.x
Zanette I., Daghfous G., Weitkamp T., Gillet B., Adriaens D., Langer M., Cloetens P., Helfen L., Bravin A., Peyrin F., Baumbach T., Dischler J.-M., Van Loo D., Praet T., Poirier-Quinot M. & Boistel R. (2014). Looking inside marine organisms with MRI and X-ray tomography. In: Reynaud E.G. (ed.) Imaging Marine Life: 123–186. Wiley & Sons. https://doi.org/10.1002/9783527675418.ch7
Downloads
Published
How to Cite
Issue
Section
License
All published papers will be put on-line as high resolution PDF’s. Copyright thus remains with the authors. All manuscripts will be licensed under a Creative Commons Attribution 3.0 License https://creativecommons.org/licenses/by/4.0/.