Divergent isotopic niches of sister species of the Antarctic amphipod genus Charcotia

Authors

  • Dorien Aerts Operational Directorate: Natural Environment/Earth & History of Life, Aquatic & Terrestrial Ecology, Freshwater Biology, Institute for Natural Sciences, B-1000 Brussels, Belgium https://orcid.org/0000-0001-7408-4380
  • Aaron Kolder Marine Biology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium https://orcid.org/0009-0009-6228-1841
  • Gilles Lepoint Laboratory of Trophic and Isotope Ecology, Freshwater and Oceanic Sciences Unit of research (FOCUS), University of Liège, B-4000 Liège, Belgium https://orcid.org/0000-0003-4375-0357
  • Loïc N. Michel Animal Systematics and Diversity, Freshwater and Oceanic Sciences Unit of research (FOCUS), University of Liège, B-4000 Liège, Belgium https://orcid.org/0000-0003-0988-7050
  • Isa Schön Operational Directorate: Natural Environment/Earth & History of Life, Aquatic & Terrestrial Ecology, Freshwater Biology, Institute for Natural Sciences, B-1000 Brussels, Belgium https://orcid.org/0000-0001-9269-6487

DOI:

https://doi.org/10.26496/bjz.2025.199

Keywords:

stable isotopes, trophic ecology, ecological plasticity, benthic, scavenger, Southern Ocean

Abstract

Climate change and resource exploitation in the Southern Ocean are important anthropogenic pressures on Antarctic food webs. Understanding the eco-functional roles of Antarctic communities is essential for ecosystem management and conservation. Amphipods are among the most dominant and ecologically important benthic taxa in the Southern Ocean. The amphipod genus Charcotia is part of the scavenger guild playing a dominant role in nutrient recycling. To study the trophic habits of two sister species C. amundseni and C. obesa, stable isotope ratios of carbon and nitrogen were measured along geographical and bathymetrical gradients. Charcotia obesa belongs to the fourth and C. amundseni to the fifth trophic level, based on significant differences in δ15N values. Both benthic and pelagic primary producers dominate the diet in both species as derived from their low δ13C values. Charcotia obesa, the species with the narrowest depth range of the two studied species, did not show a depth-related pattern in isotopic ratios. An increasing geographic gradient of both δ15N and δ13C values was observed for C. obesa, ranging from the northern most tip of the Western Antarctic Peninsula to the southwestern most part in the Bellingshausen Sea. This might be linked to nutrient rich glacial meltwater in the latter part of the Southern Ocean. Nitrogen stable isotope ratios of C. amundseni showed a significant difference between Crown Bay and the other locations; this might be explained by the close location of the Filchner Area to nutrient rich upwelling in the Weddell Sea Gyre. Our study provides evidence for niche differentiation between two closely related amphipod species. Incorporation of additional samples from other locations and depth ranges in combination with isotope analysis and DNA-based prey identification might clarify the trophic position of benthic amphipods.

References

Amsler C.D., Mcclintock J.B. & Baker B.J. (2014). Chemical mediation of mutualistic interactions between macroalgae and mesograzers structure unique coastal communities along the western Antarctic Peninsula. Journal of Phycology 50 (1): 1–10. https://doi.org/10.1111/jpy.12137

Aumack C.F., Lowe A.T., Amsler C.D., Amsler M.O., McClintock J.B. & Baker B.J. (2017). Gut content, fatty acid, and stable isotope analyses reveal dietary sources of macroalgal-associated amphipods along the western Antarctic Peninsula. Polar Biology 40: 1371–1384. https://doi.org/10.1007/s00300-016-2061-4

Bessa F., Baeta A. & Marques J.C. (2014). Niche segregation amongst sympatric species at exposed sandy shores with contrasting wrack availabilities illustrated by stable isotopic analysis. Ecological Indicators, 36, 694–702. https://doi.org/10.1016/j.ecolind.2013.09.026

Bolstad K.S.R., Amsler M.O., De Broyer C., Komoda M. & Iwasaki H. (2023). In-situ observations of an intact natural whale fall in Palmer deep, Western Antarctic Peninsula. Polar Biology 46 (2): 123–132. https://doi.org/10.1007/s00300-022-03109-1

Borer E.T., Seabloom E.W., Shurin J.B., Anderson K.E., Blanchette C.A., Broitman B., Cooper S.D. & Halpern B.S. (2005). What determines the strength of a trophic cascade? Ecology 86 (2): 528–537. https://doi.org/10.1890/03-0816

Brault E.K., Koch P.L., McMahon K.W., Broach K.H., Rosenfield A.P., Sauthoff W., Loeb V.J., Arrigo K.R. & Smith W.O. (2018). Carbon and nitrogen zooplankton isoscapes in West Antarctica reflect oceanographic transitions. Marine Ecology Progress Series 593: 29–45. https://doi.org/10.3354/meps12524

Bruno J.F. & O’Connor M.I. (2005). Cascading effects of predator diversity and omnivory in a marine food web. Ecology Letters 8 (10): 1048–1056. https://doi.org/10.1111/j.1461-0248.2005.00808.x

Chapelle G., Peck L.S. & Clarke A. (1994). Effects of feeding and starvation on the metabolic rate of the necrophagous Antarctic amphipod Waldeckia obesa (Chevreux, 1905). Journal of Experimental Marine Biology and Ecology 183: 63–79. https://doi.org/10.1016/0022-0981(94)90157-0

Cherel Y., Ducatez S., Fontaine C., Richard P. & Guinet C. (2008). Stable isotopes reveal the trophic position and mesopelagic fish diet of female southern elephant seals breeding on the Kerguelen Islands. Marine Ecology Progress Series 370: 239–247. https://doi.org/10.3354/meps07673

Chikaraishi Y., Steffan S.A., Ogawa N.O., Ishikawa N.F., Sasaki Y., Tsuchiya M. & Ohkouchi N. (2014). High-resolution food webs based on nitrogen isotopic composition of amino acids. Ecology and Evolution 4 (12): 2423–2449. https://doi.org/10.1002/ece3.1103

Clarke A. (2008). Antarctic marine benthic diversity: patterns and processes. Journal of Experimental Marine Biology and Ecology 366 (1–2): 48–55. https://doi.org/10.1016/j.jembe.2008.07.008

Constable A.J., Melbourne-Thomas J., Corney S.P., Arrigo K.R., Barbraud C., Barnes D.K.A., Bindoff N. L., Boyd P.W., Brandt A., Costa D.P., Davidson A.T., Ducklow H.W., Emmerson L., Fukuchi M., Gutt J., Hindell M.A., Hofmann E.E., Hosie G.W., Iida T., … Ziegler P. (2014). Climate change and Southern Ocean ecosystems I: How changes in physical habitats directly affect marine biota. Global Change Biology 20 (10): 3004–3025. https://doi.org/10.1111/gcb.12623

Coplen T.B. (2011). Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Communications in Mass Spectrometry 25 (17): 2538–2560. https://doi.org/10.1002/rcm.5129

Dauby P., Scailteur Y. & De Broyer C. (2001). Trophic diversity within the eastern Weddell Sea amphipod community. Hydrobiologia 443: 69–86. https://doi.org/10.1023/A:1017596120422

David B. & Saucède T. (2015). 4 - Southern Ocean Biogeography and Communities. In: David B. & Saucède T. (eds) Biodiversity of the Southern Ocean: 43–57. Elsevier. https://doi.org/10.1016/B978-1-78548-047-8.50004-7

De Broyer C. & Jażdżewska A. (2014). Biogeographic patterns of Southern Ocean benthic amphipods. In: De Broyer C., Koubbi P., Griffiths H., Raymond B., d’Udekem d’Acoz C., Van de Putte A., Danis B., David B., Grant S., Gutt J., Held C., Hosie G., Huettmann F., Post A.& Ropert-Coudert Y. (eds) Biogeographic Atlas of the Southern Ocean, 1st ed.: 155–165. Scientific Committee on Antarctic Research. https://doi.org/10.13140/RG.2.1.1716.3289

De Broyer C. & Jazdzewski K. (1993). Contribution to the marine biodiversity inventory. A checklist of the Amphipoda (Crustacea) of the Southern Ocean. Document de Travail de l’Institut royal des Sciences naturelles de Belgique 73: 1–155.

De Broyer C. & Jazdzewski K. (1996). Biodiversity of the Southern Ocean: Towards a new synthesis for the Amphipoda (Crustacea). Bollettino Del Museo Civico Di Storia Naturele Di Verona 20: 547–568.

De Broyer C., Nyssen F. & Dauby P. (2004). The crustacean scavenger guild in Antarctic shelf, bathyal and abyssal communities. Deep-Sea Research Part II: Topical Studies in Oceanography 51 (14–16): 1733–1752. https://doi.org/10.1016/j.dsr2.2004.06.032

de Lima R.C., Cebuhar J.D., Negrete J., Ferreira A., Secchi E.R. & Botta S. (2022). Ecosystem shifts inferred from long-term stable isotope analysis of male Antarctic fur seal Arctocephalus gazella teeth. Marine Ecology Progress Series 695: 203–216. https://doi.org/10.3354/meps14112

DeNiro M.J. & Epstein S. (1978). Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta 42 (5): 495–506. https://doi.org/10.1016/0016-7037(78)90199-0

DeNiro M.J. & Epstein S. (1981). Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta 45 (3): 341–351. https://doi.org/10.1016/0016-7037(81)90244-1

Difiore P.J., Sigman D.M., Karsh K.L., Trull T.W., Dunbar R.B. & Robinson R.S. (2010). Poleward decrease in the isotope effect of nitrate assimilation across the Southern Ocean. Geophysical Research Letters 37 (17). https://doi.org/10.1029/2010GL044090

Doi H., Akamatsu F. & González A.L. (2017). Starvation effects on nitrogen and carbon stable isotopes of animals: An insight from meta-analysis of fasting experiments. Royal Society Open Science 4 (8): e170633. https://doi.org/10.1098/rsos.170633

d’Udekem d’Acoz C., Schön I. & Robert H. (2018). The genus Charcotia Chevreux, 1906 in the Southern Ocean, with the description of a new species (Crustacea, Amphipoda, Lysianassoidea). Belgian Journal of Zoology 148 (1): 31–82. https://doi.org/10.26496/bjz.2018.18

Duffy J.E., Cardinale B.J., France K.E., McIntyre P.B., Thébault E. & Loreau M. (2007). The functional role of biodiversity in ecosystems: Incorporating trophic complexity. Ecology Letters 10 (6): 522–538. https://doi.org/10.1111/j.1461-0248.2007.01037.x

El-Sabaawi R.W., Trudel M., Mackas D.L., Dower J.F. & Mazumder A. (2012). Interannual variability in bottom-up processes in the upstream range of the California Current system: An isotopic approach. Progress in Oceanography 106: 16–27. https://doi.org/10.1016/j.pocean.2012.06.004

Engel Z., Láska K., Smolíková J. & Kavan J. (2024). Recent change in surface mass-balance trends of glaciers on James Ross Island, north-eastern Antarctic Peninsula. Journal of Glaciology 70: e13. https://doi.org/10.1017/jog.2024.16

Espinasse B., Pakhomov E.A., Hunt B.P.V. & Bury S.J. (2019). Latitudinal gradient consistency in carbon and nitrogen stable isotopes of particulate organic matter in the Southern Ocean. Marine Ecology Progress Series 631: 19–30. https://doi.org/10.3354/meps13137

Fantle M.S., Dittel A.I., Schwalm S.M., Epifanio C.E. & Fogel M.L. (1999). A food web analysis of the juvenile blue crab, Callinectes sapidus, using stable isotopes in whole animals and individual amino acids. Oecologia 120: 416–426. https://doi.org/10.1007/s004420050874

France R.L. (1995). Carbon-13 enrichment in benthic compared to planktonic algae: foodweb implications. Marine Ecology Progress Series 124: 307–312. https://doi.org/10.3354/meps124307

Fraser A.D., Wongpan P., Langhorne P.J., Klekociuk A. R., Kusahara K., Lannuzel D., Massom R.A., Meiners K.M., Swadling K.M., Atwater D.P., Brett G.M., Corkill M., Dalman L.A., Fiddes S., Granata A., Guglielmo L., Heil P., Leonard G.H., Mahoney A.R., … Wienecke B. (2023). Antarctic landfast sea ice: A review of its physics, biogeochemistry and ecology. Reviews of Geophysics 61 (2): e2022RG000770. https://doi.org/10.1029/2022RG000770

Gerringer M.E., Popp B.N., Linley T.D., Jamieson A.J. & Drazen J.C. (2017). Comparative feeding ecology of abyssal and hadal fishes through stomach content and amino acid isotope analysis. Deep-Sea Research Part I: Oceanographic Research Papers 121: 110–120. https://doi.org/10.1016/j.dsr.2017.01.003

Gillies C.L., Stark J.S., Johnstone G.J. & Smith S.D.A. (2012a). Carbon flow and trophic structure of an Antarctic coastal benthic community as determined by δ13C and δ15N. Estuarine, Coastal and Shelf Science 97: 44–57. https://doi.org/10.1016/j.ecss.2011.11.003

Gillies C.L., Stark J.S. & Smith S.D.A. (2012b). Research article: Small-scale spatial variation of δ 13C and δ15N isotopes in Antarctic carbon sources and consumers. Polar Biology 35 (6): 813–827. https://doi.org/10.1007/s00300-011-1126-7

Gillies C.L., Stark J.S., Johnstone G.J. & Smith S.D.A. (2013). Establishing a food web model for coastal Antarctic benthic communities: A case study from the Vestfold Hills. Marine Ecology Progress Series 478: 27–41. https://doi.org/10.3354/meps10214

Gordon A.L., Visbeck M. & Huber B. (2001). Export of Weddell Sea deep and bottom water. Journal of Geophysical Research: Oceans 106 (C5): 9005–9017. https://doi.org/10.1029/2000jc000281

Griffiths H.J. (2010). Antarctic marine biodiversity - What do we know about the distribution of life in the Southern Ocean? PLoS ONE 5 (8): e11683. https://doi.org/10.1371/journal.pone.0011683

Guerreiro M., Phillips R.A., Cherel Y., Ceia F.R., Alvito P., Rosa R. & Xavier J.C. (2015). Habitat and trophic ecology of Southern Ocean cephalopods from stable isotope analyses. Marine Ecology Progress Series 530: 119–134. https://doi.org/10.3354/meps11266

Harley C.D.G., Hughes A.R., Hultgren K.M., Miner B.G., Sorte C.J.B., Thornber C.S., Rodriguez L.F., Tomanek L. & Williams S.L. (2006). The impacts of climate change in coastal marine systems. Ecology Letters 9 (2): 228–241. https://doi.org/10.1111/j.1461-0248.2005.00871.x

Haubert D., Langel R., Scheu S. & Ruess L. (2005). Effects of food quality, starvation and life stage on stable isotope fractionation in Collembola. Pedobiologia 49 (3): 229–237. https://doi.org/10.1016/j.pedobi.2004.11.001

Havermans C., Nagy Z.T., Sonet G., De Broyer C. & Martin P. (2010). Incongruence between molecular phylogeny and morphological classification in amphipod crustaceans: A case study of Antarctic lysianassoids. Molecular Phylogenetics and Evolution 55 (1): 202–209. https://doi.org/10.1016/j.ympev.2009.10.025

Henley S.F., Cavan E.L., Fawcett S.E., Kerr R., Monteiro T., Sherrell R.M., Bowie A.R., Boyd P.W., Barnes D.K.A., Schloss I.R., Marshall T., Flynn R. & Smith S. (2020). Changing biogeochemistry of the Southern Ocean and its ecosystem implications. Frontiers in Marine Science 7: e581. https://doi.org/10.3389/fmars.2020.00581

Hoegh-Guldberg O. & Bruno J.F. (2010). The impact of climate change on the world’s marine ecosystems. Science 328 (5985): 1523–1528. https://doi.org/10.1126/science.1189930

Holland P.R., Jenkins A. & Holland D.M. (2010). Ice and ocean processes in the Bellingshausen sea, Antarctica. Journal of Geophysical Research: Oceans 115 (5): C05020. https://doi.org/10.1029/2008JC005219

Ives A.R., Cardinale B.J. & Snyder W.E. (2005). A synthesis of subdisciplines: Predator-prey interactions, and biodiversity and ecosystem functioning. Ecology Letters 8 (1): 102–116. https://doi.org/10.1111/j.1461-0248.2004.00698.x

Jackson A.L., Inger R., Parnell A.C. & Bearhop S. (2011). Comparing isotopic niche widths among and within communities: SIBER - Stable Isotope Bayesian Ellipses in R. Journal of Animal Ecology 80 (3): 595–602. https://doi.org/10.1111/j.1365-2656.2011.01806.x

Janecki T. & Rakusa-Suszczewski S. (2005). The influence of starvation and amino acids on metabolism of the Antarctic amphipod Waldeckia obesa. Journal of Crustacean Biology 25 (2): 196–202. https://doi.org/10.1651/C-2522

Jażdżewska A. (2009). Antarctic necrophagous lysianassoids from a stranded fur seal carcass. Polish Polar Research 30 (1): 29–36.

Klarner B., Maraun M. & Scheu S. (2013). Trophic diversity and niche partitioning in a species rich predator guild - Natural variations in stable isotope ratios (13C/12C, 15N/14N) of mesostigmatid mites (Acari, Mesostigmata) from Central European beech forests. Soil Biology and Biochemistry 57: 327–333. https://doi.org/10.1016/j.soilbio.2012.08.013

Kolts J.M., Lovvorn J.R., North C.A., Grebmeier J.M. & Cooper L.W. (2013). Relative value of stomach contents, stable isotopes, and fatty acids as diet indicators for a dominant invertebrate predator (Chionoecetes opilio) in the northern Bering Sea. Journal of Experimental Marine Biology and Ecology 449: 274–283. https://doi.org/10.1016/j.jembe.2013.10.005

Lara R.J., Alder V., Franzosi C.A. & Kattner G. (2010). Characteristics of suspended particulate organic matter in the southwestern Atlantic: Influence of temperature, nutrient and phytoplankton features on the stable isotope signature. Journal of Marine Systems 79 (1–2): 199–209. https://doi.org/10.1016/j.jmarsys.2009.09.002

Le Bourg B., Kuklinski P., Balazy P., Lepoint G. & Michel L.N. (2021). Interactive effects of body size and environmental gradient on the trophic ecology of sea stars in an Antarctic fjord. Marine Ecology Progress Series 674: 189–202. https://doi.org/10.3354/meps13821

Maes S.M., Schaafsma F.L., Christiansen H., Hellemans B., Lucassen M., Mark F.C., Flores H. & Volckaert F.A.M. (2022). Comparative visual and DNA-based diet assessment extends the prey spectrum of polar cod Boreogadus saida. Marine Ecology Progress Series 698: 139–154. https://doi.org/10.3354/meps14145

Michel L.N., David B., Dubois P., Lepoint G. & De Ridder C. (2016). Trophic plasticity of Antarctic echinoids under contrasted environmental conditions. Polar Biology 39 (5): 913–923. https://doi.org/10.1007/s00300-015-1873-y

Michel L.N., Danis B., Dubois P., Eleaume M., Fournier J., Gallut C., Jane P. & Lepoint G. (2019). Increased sea ice cover alters food web structure in East Antarctica. Scientific Reports 9 (1): 8062. https://doi.org/10.1038/s41598-019-44605-5

Michel L.N., Nyssen F.L., Dauby P. & Verheye M. (2020). Can mandible morphology help predict feeding habits in Antarctic amphipods? Antarctic Science 32 (6): 496–507. https://doi.org/10.1017/S0954102020000395

Michener R.H. & Kaufman L. (2007). Stable Isotope ratio as tracers in marine food webs: An update. In: Michener R. & Lajtha K. (eds) Stable Isotopes in Ecology and Environmental Science 2nd Edtion: 238–282. Blackwell Publishing.

Newsome S.D., Martinez del Rio C., Bearhop S. & Phillips D.L. (2007). A niche for isotopic ecology. Frontiers in Ecology and the Environment 5 (8): 429–436. https://doi.org/10.1890/060150.1

Nicholls K.W., Østerhus S., Makinson K., Gammelsrød T. & Fahrbach E. (2009). Ice-ocean processes over the continental shelf of the southern Weddell Sea, Antarctica: A review. In Reviews of Geophysics 47 (3): RG3003. https://doi.org/10.1029/2007RG000250

Nienstedt K.M. & Poehling H.M. (2004). Prey to predator transfer of enriched 15N-contents: Basic laboratory data for predation studies using 15N as marker. Entomologia Experimentalis et Applicata 112 (3): 183–190. https://doi.org/10.1111/j.0013-8703.2004.00195.x

Norkko A., Thrush S.F., Cummings V.J., Gibbs M.M., Andrew N.L., Norkko J. & Schwarz A.-M. (2007). Trophic structure of coastal Antarctic food webs associated with changes in sea ice and food supply. Source: Ecology 88 (11): 2810–2820. https://doi.org/10.1890/06-1396.1

Núñez-Pons L., Rodríguez-AriasM., Gómez-Garreta A., Ribera-Siguán A. & Avila C. (2012). Feeding deterrency in Antarctic marine organisms: Bioassays with the omnivore amphipod Cheirimedon femoratus. Marine Ecology Progress Series, 462, 163–174. https://doi.org/10.3354/meps09840

Nygård H., Berge J., Søreide J., Vihtakari M. & Falk-Petersen S. (2012). The amphipod scavenging guild in two Arctic fjords: seasonal variations, abundance and trophic interactions. Aquatic Biology 14 (3): 247–264. https://doi.org/10.3354/ab00394

Nyssen F., Brey T., Lepoint G., Bouquegneau J.M., De Broyer C. & Dauby P. (2002). A stable isotope approach to the eastern Weddell Sea trophic web: Focus on benthic amphipods. Polar Biology 25 (4): 280–287. https://doi.org/10.1007/s00300-001-0340-0

Nyssen F., Brey T., Dauby P. & Graeve M. (2005). Trophic position of Antarctic amphipods - enhanced analysis by a 2-dimensional biomarker assay. Marine Ecology Progress Series 300: 135–145. https://doi.org/10.3354/meps300135

Olaso I., Rauschert M. & De Broyer C. (2000). Trophic ecology of the family Artedidraconidae (Pisces: Osteichthyes) and its impact on the eastern Weddell Sea benthic system. Marine Ecology Progress Series 194: 143–158. https://doi.org/10.3354/meps194143

Osman E.O. & Weinnig A.M. (2021). Microbiomes and obligate symbiosis of deep-sea animals. Annual Review of Animal Biosciences 10: 151–176. https://doi.org/10.1146/annurev-animal-081621-112021

Panasiuk A., Wawrzynek-Borejko J., Musiał A. & Korczak-Abshire M. (2020). Pygoscelis penguin diets on King George Island, South Shetland Islands, with a special focus on the krill Euphausia superba. Antarctic Science 32 (1): 21–28. https://doi.org/10.1017/S0954102019000543

Parkinson C. L. & Cavalieri D. J. (2012). Antarctic sea ice variability and trends, 1979–2010. Cryosphere 6 (4): 871–880. https://doi.org/10.5194/tc-6-871-2012

Post D.M. (2002). Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83 (3): 703–718. https://doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2

Poulin E., Palma A.T. & Féral J.P. (2002). Evolutionary versus ecological success in Antarctic benthic invertebrates. Trends in Ecology & Evolution 17 (5): 218–222. https://doi.org/10.1016/S0169-5347(02)02493-X

Quezada-Romegialli C., Jackson A.L., Hayden B., Kahilainen K.K., Lopes C. & Harrod C. (2018). tRophic Position, an r package for the Bayesian estimation of trophic position from consumer stable isotope ratios. Methods in Ecology and Evolution 9 (6): 1592–1599. https://doi.org/10.1111/2041-210X.13009

Rakusa-Suszczewski R.S., Janecki T. & Domanov M.M. (2010). Starvation and chemoreception in Antarctic benthic invertebrates. Biology Bulletin 37 (1): 56–62. https://doi.org/10.1134/S1062359010010085

Rstudio: R Core Team (2021). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available from https://www.R-project.org/

Scheer S.L., Sweetman A.K., Piatkowski U., Rohlfer E K. & Hoving H.J.T. (2022). Food fall-specific scavenging response to experimental medium-sized carcasses in the deep sea. Marine Ecology Progress Series 685: 31–48. https://doi.org/10.3354/meps13973

Seefeldt M.A., Campana G.L., Deregibus D., Quartino M.L., Abele D., Tollrian R. & Held C. (2017). Different feeding strategies in Antarctic scavenging amphipods and their implications for colonisation success in times of retreating glaciers. Frontiers in Zoology 14 (1): e59. https://doi.org/10.1186/s12983-017-0248-3

Seefeldt M.A., Weigand A.M., Havermans C., Moreira E. & Held C. (2018). Fishing for scavengers: an integrated study to amphipod (Crustacea: Lysianassoidea) diversity of Potter Cove (South Shetland Islands, Antarctica). Marine Biodiversity 48 (4): 2081–2104. https://doi.org/10.1007/s12526-017-0737-9

Sheehan P.M.F., Heywood K.J., Thompson A.F., Flexas M.M. & Schodlok M.P. (2023). Sources and pathways of glacial meltwater in the Bellingshausen Sea, Antarctica. Geophysical Research Letters 50 (14): e2023GL102785. https://doi.org/10.1029/2023GL102785

Smale D.A., Barnes D.K.A., Fraser K.P.P., Mann P.J. & Brown M.P. (2007). Scavenging in Antarctica: Intense variation between sites and seasons in shallow benthic necrophagy. Journal of Experimental Marine Biology and Ecology 349 (2): 405–417. https://doi.org/10.1016/j.jembe.2007.06.002

Søreide J.E. & Nygård H. (2012). Challenges using stable isotopes for estimating trophic levels in marine amphipods. Polar Biology 35 (3): 447–453. https://doi.org/10.1007/s00300-011-1073-3

St John Glew K., Espinasse B., Hunt B.P.V., Pakhomov E.A., Bury S.J., Pinkerton M., Nodder S.D., Gutiérrez-Rodríguez A., Safi K., Brown J.C.S., Graham L., Dunbar R.B., Mucciarone D.A., Magozzi S., Somes C. & Trueman C.N. (2021). Isoscape models of the Southern Ocean: Predicting spatial and temporal variability in carbon and nitrogen isotope compositions of Particulate Organic Matter. Global Biogeochemical Cycles 35 (9): e2020GB006901. https://doi.org/10.1029/2020GB006901

Stowasser G., Atkinson A., McGill R.A.R., Phillips R.A., Collins M.A. & Pond D.W. (2012). Food web dynamics in the Scotia Sea in summer: A stable isotope study. Deep-Sea Research Part II: Topical Studies in Oceanography 59–60: 208–221. https://doi.org/10.1016/j.dsr2.2011.08.004

Thompson R.M., Hemberg M., Starzomski B.M. & Shurin J.B. (2007). Trophic levels and trophic tangles: The prevalence of omnivory in real food webs. Ecology 88 (3): 612–617. https://doi.org/10.1890/05-1454

Trochine C., Díaz Villanueva V., Balseiro E. & Modenutti B. (2019). Nutritional stress by means of high C:N ratios in the diet and starvation affects nitrogen isotope ratios and trophic fractionation of omnivorous copepods. Oecologia 190 (3): 547–557. https://doi.org/10.1007/s00442-019-04438-5

Vernet M., Geibert W., Hoppema M., Brown P.J., Haas C., Hellmer H.H., Jokat W., Jullion L., Mazloff M., Bakker D.C.E., Brearley J.A., Croot P., Hattermann T., Hauck J., Hillenbrand C.D., Hoppe C.J.M., Huhn O., Koch B.P., Lechtenfeld O.J., … Verdy A. (2019). The Weddell Gyre, Southern Ocean: Present knowledge and future challenges. Reviews of Geophysics 57 (3): 623–708. https://doi.org/10.1029/2018RG000604

Wada E., Terazaki M., Kabaya Y. & Nemoto T. (1987). 15N and 13C abundances in the Antarctic Ocean with emphasis on the biogeochemical structure of the food web. Deep Sea Research Part A. Oceanographic Research Papers 34 (5–6): 829–841. https://doi.org/10.1016/0198-0149(87)90039-2

Wallis B.J., Hogg A.E., van Wessem J.M., Davison B.J. & van den Broeke M.R. (2023). Widespread seasonal speed-up of west Antarctic Peninsula glaciers from 2014 to 2021. Nature Geoscience 16 (3): 231–237. https://doi.org/10.1038/s41561-023-01131-4

Wickham H. (2016). ggplot2: Elegant Graphics for Data Analysis (2nd ed.). Springer International Publishing. https://doi.org/10.1007/978-3-319-24277-4

Wing S.R., Leichter J.J., Wing L.C., Stokes D., Genovese S.J., McMullin R.M. & Shatova O.A. (2018). Contribution of sea ice microbial production to Antarctic benthic communities is driven by sea ice dynamics and composition of functional guilds. Global Change Biology 24 (8): 3642–3653. https://doi.org/10.1111/gcb.14291

Zenteno L., Cárdenas L., Valdivia N., Gómez I., Höfer J., Garrido I. & Pardo L.M. (2019). Unraveling the multiple bottom-up supplies of an Antarctic nearshore benthic community. Progress in Oceanography 174: 55–63. https://doi.org/10.1016/j.pocean.2018.10.016

Zhang R., Zheng M., Chen M., Ma Q., Cao J. & Qiu Y. (2014). An isotopic perspective on the correlation of surface ocean carbon dynamics and sea ice melting in Prydz Bay (Antarctica) during austral summer. Deep-Sea Research Part I: Oceanographic Research Papers 83: 24–33. https://doi.org/10.1016/j.dsr.2013.08.006

Downloads

Published

2025-05-28

How to Cite

Aerts, D., Kolder, A., Lepoint, G., Michel, L. N., & Schön, I. (2025). Divergent isotopic niches of sister species of the Antarctic amphipod genus Charcotia. Belgian Journal of Zoology, 155(1), 49–73. https://doi.org/10.26496/bjz.2025.199

Issue

Section

Articles