Water-borne cortisol levels show individuality and predict bold/shy behaviors in the self-fertilizing fish Kryptolebias marmoratus

Authors

  • Anthony G.E. Mathiron Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth and Environment, University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium AND Institute of Life, Earth, and the Environment (ILEE), University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
  • Frédéric Silvestre Laboratory of Evolutionary and Adaptive Physiology, Institute of Life, Earth and Environment, University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium AND Institute of Life, Earth, and the Environment (ILEE), University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium

DOI:

https://doi.org/10.26496/bjz.2025.198

Keywords:

boldness, repeatability, hormone, isogenic lineage, mangrove rivulus

Abstract

Differences in personality traits can have important consequences for ecological and evolutionary processes because they can either provide fitness benefits (e.g., better access to food or reproductive success) or lower responsiveness to changes in the environment (i.e., lower behavioral flexibility). Since the last decade, there is a growing interest in studying the mechanisms that generate and maintain consistent individual differences in animal behavior such as inter-individual differences in endocrine traits. In fish, little is known about how repeatable, among-individual variance in endocrine traits such as cortisol levels may predict inter-individual variability in behavioral expression. Based on a common-garden experiment, we investigated whether cortisol could predict expression of behaviors associated with bold/shy personality in three naturally isogenic lineages of the self-fertilizing mangrove rivulus, Kryptolebias marmoratus. First, we explored both inter-individual and inter-lineage variability of water-borne cortisol levels over time. Cortisol levels were different between lineages: fish that originate from Emerson Point Preserve population (EPP) had significantly lower cortisol levels than individuals from the Dove Creek population. Moreover, while fish cortisol levels can vary over time, we observed repeatability in inter-individual variation within each lineage. We also obtain evidence for a slight but significant effect of interaction between cortisol levels and lineages on fish probability of exiting from a shelter and proportion of time before exiting from a shelter. Mangrove rivulus from the EPP lineage had lower probability of exiting from shelter and spent more time before exiting from shelter when they had low cortisol levels, compared to DC4 and DC11 individuals. Our study supports that cortisol levels have a genetic basis in the mangrove rivulus and suggests that water-borne cortisol levels predict behaviors associated with fish personality traits.

References

Alfonso S., Houdelet C., Bessa E., Geffroy B., Sadoul B. (2023). Water temperature explains part of the variation in basal plasma cortisol level, within and between-fish species. Journal of Fish Biology 103 (4): 828–838. https://doi.org/10.1111/jfb.15342

Anestis S.F. (2011). Primate personality and behavioral endocrinology. Personality and Temperament in Nonhuman Primates 169–192. https://doi.org/10.1007/978-1-4614-0176-6_7

Avise J.C. & Tatarenkov A. (2015). Population genetics and evolution of the mangrove rivulus Kryptolebias marmoratus, the world’s only self-fertilizing hermaphroditic vertebrate: genetics and evolution of a selfing killifish. Journal of Fish Biology 87: 519–538. https://doi.org/10.1111/jfb.12741

Barton B.A. (2002). Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integrative and Comparative Biology 42: 517–525. https://doi.org/10.1093/icb/42.3.517

Bierbach D., Laskowski K.L. & Wolf M. (2017). Behavioural individuality in clonal fish arises despite near-identical rearing conditions. Nature Communications 8 : e15361. https://doi.org/10.1038/ncomms15361

Biro P.A. & Stamps J.A. (2015). Using repeatability to study physiological and behavioural traits: ignore time-related change at your peril. Animal Behaviour 105: 223–230. https://doi.org/10.1016/j.anbehav.2015.04.008

Boulton K., Massault C., Houston R.D., de Koning D.J., Haley C.S., Bovenhuis H., Batargias C., Canario A.V.M., Kotoulas G. & Tsigenopoulos C.S. (2011). QTL affecting morphometric traits and stress response in the gilthead seabream (Sparus aurata). Aquaculture 319: 58–66. https://doi.org/10.1016/j.aquaculture.2011.06.044

Boulton K., Couto E., Grimmer A.J., Earley R.L., Canario A.V.M., Wilson A.J. & Walling C.A. (2015). How integrated are behavioral and endocrine stress response traits? A repeated measures approach to testing the stress-coping style model. Ecology and Evolution 5: 618–633. https://doi.org/10.1002/ece3.1395

Carion A., Markey A., Hétru J., Carpentier C., Suarez-Ulloa V., Denoël,M., Earley R.L. & Silvestre F. (2020). Behavior and gene expression in the brain of adult self-fertilizing mangrove rivulus fish (Kryptolebias marmoratus) after early life exposure to the neurotoxin β-N-methylamino-l-alanine (BMAA). NeuroToxicology 79: 110–121. https://doi.org/10.1016/j.neuro.2020.04.007

Chang C., Li C.Y., Earley R.L. & Hsu Y. (2012). Aggression and related behavioral traits: the impact of winning and losing and the role of hormones. Integrative and Comparative Biology 52 (6): 801–813. https://doi.org/10.1093/icb/ics057

Chapelle V. (2023). Adaptation and Evolution with Low Genetic Diversity: a Combined Field and Laboratory Study on DNA Methylation Variation in the Mangrove Rivulus Kryptolebias marmoratus. PhD Thesis, University of Namur, Belgium.

Clement T.S., Parikh V., Schrumpf M. & Fernald R.D. (2005). Behavioral coping strategies in a cichlid fish: the role of social status and acute stress response in direct and displaced aggression. Hormones and Behavior 47 (3): 336–342.

Cockrem J.F. (2013). Individual variation in glucocorticoid stress responses in animals. General and Comparative Endocrinology 181: 45–58. https://doi.org/10.1016/j.ygcen.2012.11.025

Cook K.V., O’Connor C.M., Gilmour K.M. & Cooke S.J. (2011). The glucocorticoid stress response is repeatable between years in a wild teleost fish. Journal of Comparative Physiology A 197: 1189–1196. https://doi.org/10.1007/s00359-011-0680-3

Cook K.V., O’Connor C.M., McConnachie S.H., Gilmour K.M. & Cooke S.J. (2012). Condition dependent intra-individual repeatability of stress-induced cortisol in a freshwater fish. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 161: 337–343. https://doi.org/10.1016/j.cbpa.2011.12.002

Coppens C.M., de Boer S.F. & Koolhaas J.M. (2010). Coping styles and behavioral flexibility: towards underlying mechanisms. Philosophical Transactions of the Royal Society B: Biological Sciences 365 (1560): 4021-4028. https://doi.org/10.1098/rstb.2010.0217

Crespi E.J., Williams T.D., Jessop T.S. & Delehanty B. (2013). Life history and the ecology of stress:

how do glucocorticoid hormones influence life-history variation in animals? Functional Ecology 27: 93–106. https://doi.org/10.1111/1365-2435.12009

Dall S.R.X., Bell A.M., Bolnick D.I. & Ratnieks F.L.W. (2012). An evolutionary ecology of individual differences. Ecology Letters 15: 1189–1198. https://doi.org/10.1111/j.1461-0248.2012.01846.x

Delcourt J., Denoël M., Ylieff M., Poncin P. (2013). Video multitracking of fish behaviour: a synthesis and future perspectives: Multitracking fish behaviour. Fish and Fisheries 14: 186–204. https://doi.org/10.1111/j.1467-2979.2012.00462.x

de Villemereuil P., Gaggiotti O.E., Mouterde M. & Till-Bottraud I. (2016). Common garden experiments in the genomic era: new perspectives and opportunities. Heredity 116 (3): 249–254. https://doi.org/10.1038/hdy.2015.93

Dingemanse N.J. & Wolf M. (2010). Recent models for adaptive personality differences: a review. Philosophical Transactions of the Royal Society B 365 : 3947–3958. https://doi.org/10.1098/rstb.2010.0221

Earley R.L. & Hsu Y. (2008). Reciprocity between endocrine state and contest behavior in the killifish, Kryptolebias marmoratus. Hormones and Behavior 53: 442–451. https://doi.org/10.1016/j.yhbeh.2007.11.017

Earley R., Wong S., Campbell J. & Dykstra M. (2008). Measuring water-borne cortisol in convict cichlids (Amatitlania nigrofasciata): is the procedure a stressor? Behaviour 145 (10): 1283–1305.

Earley R.L., Lu C.-K., Lee I.-H., Wong S.C. & Hsu Y. (2013). Winner and loser effects are modulated by hormonal states. Frontiers in Zoology 10: e6. https://doi.org/10.1186/1742-9994-10-6

Edenbrow M. & Croft D.P. (2013). Environmental and genetic effects shape the development of personality traits in the mangrove killifish Kryptolebias marmoratus. Oikos 122: 667–681. https://doi.org/10.1111/j.1600-0706.2012.20556.x

Ellis T., James J.D., Stewart C. & Scott A.P. (2004). A non-invasive stress assay based upon measurement of free cortisol released into the water by rainbow trout. Journal of Fish Biology65: 1233–1252. https://doi.org/10.1111/j.0022-1112.2004.00499.x

Félix A.S., Faustino A.I., Cabral E.M. & Oliveira R.F. (2013). Noninvasive measurement of steroid hormones in zebrafish holding-water. Zebrafish 10 (1): 110–115. https://doi.org/10.1089/zeb.2012.0792

Fellous A., Labed-Veydert T., Locrel M., Voisin A.-S., Earley R.L. & Silvestre F. (2018). DNA methylation in adults and during development of the self-fertilizing mangrove rivulus, Kryptolebias marmoratus. Ecology and Evolution 8: 6016–6033. https://doi.org/10.1002/ece3.4141

Fox J. & Weisberg S. (2024). Using car and effects Functions in Other Functions 3: 1–5. Available from https://cran.r-project.org/web/packages/car/vignettes/embedding.pdf [accessed 20 February 2025].

Friesen C.N., Chapman L.J. & Aubin-Horth N. (2012). Holding water steroid hormones in the African cichlid fish Pseudocrenilabrus multicolor victoriae. General and Comparative Endocrinology 179 (3): 400-405. https://doi.org/10.1016/j.ygcen.2012.07.031

Fürtbauer I., Pond A., Heistermann M. & King A.J. (2015). Personality, plasticity and predation: linking endocrine and behavioral reaction norms in stickleback fish. Functional Ecology 29 : 931–940. https://doi.org/10.1111/1365-2435.12400

Gabor C.R. & Contreras A. (2012). Measuring water-borne cortisol in Poecilia latipinna: is the process stressful, can stress be minimized and is cortisol correlated with sex steroid release rates? Journal of Fish Biology 81 (4): 1327–1339. https://doi.org/10.1111/j.1095-8649.2012.03411.x

Garcia M.J., Williams J., Sinderman B. & Earley R.L. (2015). Ready for a fight? The physiological effects of detecting an opponent’s pheromone cues prior to a contest. Physiology & Behavior 149: 1–7. https://doi.org/10.1016/j.physbeh.2015.05.014

Garcia M.J., Ferro J.M., Mattox T., Kopelic S., Marson K., Jones R., Svendsen J.C. & Earley R.L. (2016). Phenotypic differences between the sexes in the sexually plastic mangrove rivulus fish (Kryptolebias marmoratus). Journal of Experimental Biology 219: 988–997. https://doi.org/10.1242/jeb.124040

Gesto M. (2019). Consistent individual competitive ability in rainbow trout as a proxy for coping style and its lack of correlation with cortisol responsiveness upon acute stress. Physiology & Behavior 208: e112576. https://doi.org/10.1016/j.physbeh.2019.112576

Gosling S.D. (2001). From mice to men: what can we learn about personality from animal research? Psychological Bulletin 127 (1): 45–86. https://doi.org/10.1037/0033-2909.127.1.45

Gosling S.D. (2008). Personality in non-human animals: animal personality. Social and Personality Psychology Compass 2: 985–1001. https://doi.org/10.1111/j.1751-9004.2008.00087.x

Harrington Jr R.W. (1967). Environmentally controlled induction of primary male gonochorists from eggs of the self-fertilizing hermaphroditic fish, Rivulus marmoratus Poey. The Biological Bulletin 132 (2): 174–199. https://doi.org/10.2307/1539887

Harrington Jr R.W. (1971). How ecological and genetic factors interact to determine when self-fertilizing hermaphrodites of Rivulus marmoratus change into functional secondary males, with a reappraisal of the modes of intersexuality among fishes. Copeia 1971 (3): 389–432. https://doi.org/10.2307/1442438

Holtmann B., Lagisz M. & Nakagawa S. (2017). Metabolic rates, and not hormone levels, are a likely mediator of between-individual differences in behaviour: a meta-analysis. Functional Ecology 31: 685–696. https://doi.org/10.1111/1365-2435.12779

Honegger K. & de Bivort B. (2018). Stochasticity, individuality and behavior. Current Biology 28: R8–R12. https://doi.org/10.1016/j.cub.2017.11.058

Houslay T.M., Earley R.L., Young A.J. & Wilson A.J. (2019). Habituation and individual variation in the endocrine stress response in the Trinidadian guppy (Poecilia reticulata). General and Comparative Endocrinology 270: 113–122. https://doi.org/10.1016/j.ygcen.2018.10.013

Houslay T. M., Earley R. L., White S.J., Lammers W., Grimmer A.J., Travers L.M., Johnson E.L., Young A.J. & Wilson A. (2022). Genetic integration of behavioural and endocrine components of the stress response. Elife 11: e67126. https://doi.org/10.7554/eLife.67126

Hulthén K., Chapman B.B., Nilsson P.A., Hansson L.-A., Skov C., Brodersen J., Vinterstare J., Brönmark C. (2017). A predation cost to bold fish in the wild. Scientific Reports 7: e1239. https://doi.org/10.1038/s41598-017-01270-w

Jablonka E. & Raz G. (2009). Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. The Quarterly Review of Biology 84 (2): 131–176. https://doi.org/10.1086/598822

Jensen P. (2013). Transgenerational epigenetic effects on animal behaviour. Progress in Biophysics and Molecular Biology 113 (3): 447-454. https://doi.org/10.1016/j.pbiomolbio.2013.01.001

Lampert K.P. & Schartl M. (2008). The origin and evolution of a unisexual hybrid: Poecilia formosa. Philosophical Transactions of the Royal Society B: Biological Sciences 363 (1505): 2901–2909. https://doi.org/10.1098/rstb.2008.0040

Li C.-Y., Tseng Y.-C., Chen Y.-J., Yang Y. & Hsu Y. (2020). Personality and physiological traits predict contest interactions in Kryptolebias marmoratus. Behavioural Processes 173: e104079. https://doi.org/10.1016/j.beproc.2020.104079

Lins L.S., Trojahn S., Sockell A., Yee M.C., Tatarenkov A., Bustamante C.D., Earley R.L. & Kelley J. L. (2018). Whole-genome sequencing reveals the extent of heterozygosity in a preferentially self-fertilizing hermaphroditic vertebrate. Genome 61 (4): 241–247. https://doi.org/10.1139/gen-2017-0188

Mackiewicz M., Tatarenkov A., Turner B.J. & Avise J.C. (2006). A mixed-mating strategy in a hermaphroditic vertebrate. Proceedings of the Royal Society B: Biological Sciences 273 (1600): 2449–2452. https://doi.org/10.1098/rspb.2006.3594

Martins C.I.M., Silva P.I.M., Conceição L.E.C., Costas B., Höglund E., Øverli Ø. & Schrama J.W. (2011). Linking Fearfulness and Coping Styles in Fish. PLoS ONE 6: e28084. https://doi.org/10.1371/journal.pone.0028084

Massault C., Hellemans B., Louro B., Batargias C., Van Houdt J.K.J. Canario A., Volckaert F.A.M., Bovenhuis H., Haley C. & de Koning D.J. (2010). QTL for body weight, morphometric traits and stress response in European sea bass Dicentrarchus labrax. Animal Genetics 41 (4): 337–345. https://doi.org/10.1111/j.1365-2052.2009.02010.x

Mesak F., Tatarenkov A., Earley R.L. & Avise J.C. (2014). Hundreds of SNPs vs. dozens of SSRs: which dataset better characterizes natural clonal lineages in a self-fertilizing fish? Frontiers in Ecology and Evolution 2: e74. https://doi.org/10.3389/fevo.2014.00074

Mesquita A.R., Wegerich Y., Patchev A.V., Oliveira M., Leão P., Sousa N. & Almeida O.F.X. (2009). Glucocorticoids and neuro- and behavioural development. Seminars in Fetal and Neonatal Medicine 14: 130–135. https://doi.org/10.1016/j.siny.2008.11.002

Mhanni A.A. & McGowan R.A. (2004). Global changes in genomic methylation levels during early development of the zebrafish embryo. Development Genes and Evolution 214: 412–417. https://doi.org/10.1007/s00427-004-0418-0

Nettle D. (2006). The evolution of personality variation in humans and other animals. American Psychologist 61: 622–631. https://doi.org/10.1037/0003-066X.61.6.622

Niemelä P.T. & Dingemanse N.J. (2018). Meta-analysis reveals weak associations between intrinsic state and personality. Proceedings of the Royal Society B 285: e20172823. https://doi.org/10.1098/rspb.2017.2823

Petitjean Q., Jean S., Gandar A., Côte J., Laffaille P. & Jacquin L. (2019). Stress responses in fish: From molecular to evolutionary processes. Science of the Total Environment 684: 371–380. https://doi.org/10.1016/j.scitotenv.2019.05.357

Pottinger T.G. (2010). A multivariate comparison of the stress response in three salmonid and three cyprinid species: evidence for inter-family differences. Journal of Fish Biology 76: 601–621. https://doi.org/10.1111/j.1095-8649.2009.02516.x

Pottinger T.G. & Carrick T.R. (1999). Modification of the plasma cortisol response to stress in rainbow trout by selective breeding. General and Comparative Endocrinology 116 (1): 122–132. https://doi.org/10.1006/gcen.1999.7355

Raoult V., Brown C., Zuberi A. & Williamson J.E. (2012). Blood cortisol concentrations predict boldness in juvenile mulloway (Argyosomus japonicus). Journal of Ethology 30: 225–232.

Razin A. & Shemer R. (1995). DNA methylation in early development. Human Molecular Genetics 4 (Suppl 1): 1751–1755. https://doi.org/10.1093/hmg/4.suppl_1.1751

Réale D., Reader S.M., Sol D., McDougall P.T. & Dingemanse N.J. (2007). Integrating animal temperament within ecology and evolution. Biological Reviews 82: 291–318. https://doi.org/10.1111/j.1469-185X.2007.00010.x

Rohonczy J., O’Dwyer K., Rochette A., Robinson S.A. & Forbes M.R. (2021). Meta-analysis shows environmental contaminants elevate cortisol levels in teleost fish – Effect sizes depend on contaminant class and duration of experimental exposure. Science of the Total Environment 800: e149402. https://doi.org/10.1016/j.scitotenv.2021.149402

Samaras A., Dimitroglou A., Sarropoulou E., Papaharisis L., Kottaras L. & Pavlidis, M. (2016). Repeatability of cortisol stress response in the European sea bass (Dicentrarchus labrax) and transcription differences between individuals with divergent responses. Science Reports 6: e34858. https://doi.org/10.1038/srep34858

Samaras A., Dimitroglou A., Kollias S., Skouradakis G., Papadakis I.E. & Pavlidis M. (2021). Cortisol concentration in scales is a valid indicator for the assessment of chronic stress in European sea bass, Dicentrarchus labrax L. Aquaculture 545: e737257. https://doi.org/10.1016/j.aquaculture.2021.737257

Schjolden J., Stoskhus A. & Winberg S. (2005). Does individual variation in stress responses and agonistic behavior reflect divergent stress coping strategies in juvenile rainbow trout? Physiological and Biochemical Zoology 78: 715–723. https://doi.org/10.1086/432153

Schoenemann K.L. & Bonier F. (2018). Repeatability of glucocorticoid hormones in vertebrates: a meta-analysis. PeerJ 6: e4398. https://doi.org/10.7717/peerj.4398

Schuett W., Tregenza T. & Dall S.R. (2010). Sexual selection and animal personality. Biological Reviews 85 (2): 217–246. https://doi.org/10.1111/j.1469-185X.2009.00101.x

Sellers J.G., Mehl,M.R. & Josephs R.A. (2007). Hormones and personality: Testosterone as a marker of individual differences. Journal of Research in Personality 41: 126–138. https://doi.org/10.1016/j.jrp.2006.02.004

Short K.H. & Petren K. (2008). Boldness underlies foraging success of invasive Lepidodactylus lugubris geckos in the human landscape. Animal Behaviour 76: 429–437. https://doi.org/10.1016/j.anbehav.2008.04.008

Sih A., Bell A. & Johnson J.C. (2004). Behavioral syndromes: an ecological and evolutionary overview. Trends in Ecology & Evolution 19: 372–378. https://doi.org/10.1016/j.tree.2004.04.009

Sih A., Mathot K.J., Moirón M., Montiglio P.-O., Wolf M. & Dingemanse N.J. (2015). Animal personality and state–behaviour feedbacks: a review and guide for empiricists. Trends in Ecology & Evolution 30: 50–60. https://doi.org/10.1016/j.tree.2014.11.004

Stamps J.A. (2007). Growth-mortality tradeoffs and ‘personality traits’ in animals. Ecology Letters 10 (5): 355–363. https://doi.org/10.1111/j.1461-0248.2007.01034.x

Tatarenkov A., Mesak F. & Avise J.C. (2017). Complete mitochondrial genome of a self-fertilizing fish Kryptolebias marmoratus (Cyprinodontiformes, Rivulidae) from Florida. Mitochondrial DNA Part A 28 (2): 244–245. https://doi.org/10.3109/19401736.2015.1115861

Taylor D.S. (2000). Biology and ecology of Rivulus marmoratus: new insights and a review. Florida Scientist 4: 242–255.

Taylor D.S. (2012). Twenty-four years in the mud: what have we learned about the natural history and ecology of the mangrove rivulus, Kryptolebias marmoratus? Integrative and Comparative Biology 52: 724–736. https://doi.org/10.1093/icb/ics062

Taylor D.S., Fisher M.T. & Turner B.J. (2001). Homozygosity and heterozygosity in three populations of Rivulus marmoratus. Environmental Biology of Fishes 61: 455–459. https://doi.org/10.1023/A:1011607905888

Voisin A.-S., Fellous A., Earley R.L. & Silvestre F. (2016). Delayed impacts of developmental exposure to 17-α-ethinylestradiol in the self-fertilizing fish Kryptolebias marmoratus. Aquatic Toxicology 180: 247–257. https://doi.org/10.1016/j.aquatox.2016.10.003

Wilson K. & Hardy I.C.W. (2002). Statistical analysis of sex ratios: an introduction. In: Hardy I.C.W. (ed.) Sex Ratios: Concepts and Research Methods: 48–92. Cambridge University Press.

Wingfield J.C. (2013). The comparative biology of environmental stress: behavioural endocrinology and variation in ability to cope with novel, changing environments. Animal Behaviour 85 (5): 1127–1133. https://doi.org/10.1016/j.anbehav.2013.02.018

Wolf M. & Weissing F.J. (2012). Animal personalities: consequences for ecology and evolution. Trends in Ecology & Evolution 27: 452–461. https://doi.org/10.1016/j.tree.2012.05.001

Wolf M., van Doorn G.S. & Weissing F.J. (2008). Evolutionary emergence of responsive and unresponsive personalities. Proceedings of the National Academy of Sciences 105: 15825–15830. https://doi.org/10.1073/pnas.0805473105

Wong S.C., Dykstra M., Campbell J.M. & Earley R.L. (2008). Measuring water-borne cortisol in convict cichlids (Amatitlania nigrofasciata): is the procedure a stressor? Behaviour 145 (10): 1283–1305. Available from https://www.jstor.org/stable/40296046 [accessed 19 February 2025].

Downloads

Published

2025-02-20

How to Cite

Mathiron, A. G., & Silvestre, F. (2025). Water-borne cortisol levels show individuality and predict bold/shy behaviors in the self-fertilizing fish Kryptolebias marmoratus. Belgian Journal of Zoology, 155(1), 31–48. https://doi.org/10.26496/bjz.2025.198

Issue

Section

Articles