Ant-icipating the fallout: a study on the radioresistance of the black garden ant Lasius niger

Authors

  • Martin Vastrade Research Unit in Environmental and Evolutionary Biology (URBE); Institute of Life, Earth and Environment (ILEE); University of Namur, 5000 Namur, Belgium
  • Valérie Cornet Research Unit in Environmental and Evolutionary Biology (URBE); Institute of Life, Earth and Environment (ILEE); University of Namur, 5000 Namur, Belgium
  • Anne-Catherine Heuskin Laboratory of Analysis by Nuclear Reaction (LARN); Namur Research Institute for Life Sciences (NARILIS); University of Namur, 5000 Namur, Belgium
  • Boris Hespeels Research Unit in Environmental and Evolutionary Biology (URBE); Institute of Life, Earth and Environment (ILEE); University of Namur, 5000 Namur, Belgium

DOI:

https://doi.org/10.26496/bjz.2024.194

Keywords:

ants, radioresistance, Lasius niger, X-rays, sterilization

Abstract

The radioresistance of ants has been a subject of curiosity and fascination, with speculation that they could thrive in radiation-contaminated environments, such as those resulting from nuclear fallout. This study investigates the radioresistance of the black garden ant Lasius niger, a widespread species inhabiting many geolocations around the world. Newly mated queens were exposed to varying doses of X-ray radiation (0–250 Gy) prior to colony initiation, and survival, fertility, and offspring development were monitored over a 77-day period. Results showed high survival rates across a broad range of radiation doses, with no significant differences between control and irradiated queens up to 11 weeks post-exposure. However, sterilization of queens was observed from doses of 50 Gy onwards, with only a few workers being produced after exposure to this dose. The specific factors contributing to the observed radioresistance differences among Formicidae species are yet to be elucidated. Further research is therefore needed to better understand these factors and their interplay in determining radioresistance. This study contributes to the understanding of ant radioresistance and provides a more accurate representation of their capacity to withstand radiation exposure.

References

Bakri A., Heather N., Hendrichs J. & Ferris I. (2005). Fifty years of radiation biology in entomology: Lessons learned from IDIDAS. Annals of the Entomological Society of America 98: 1–12. https://doi.org/10.1603/0013-8746(2005)098[0001:FYORBI]2.0.CO;2

Beltran-Pardo E., Jonsson K.I., Harms-Ringdahl M., Haghdoost S. & Wojcik A. (2015). Tolerance to gamma radiation in the tardigrade Hypsibius dujardini from embryo to adult correlate inversely with cellular proliferation. PLoS ONE 10: 1–13. https://doi.org/10.1371/journal.pone.0133658

Berenbaum M. (2001). Rad Roaches. American Entomologist Oxford University Press Oxford, UK 47: 132–133. https://doi.org/10.1093/ae/47.3.132

Berger M.J. (1995). ESTAR, PSTAR and ASTAR: Computer Programs for Calculating Stopping Powers and Ranges for Electrons, Protons and Helium Ions. IAEA.

Calcaterra L.A., Coulin C., Briano J.A. & Follett P.A. (2012). Acute exposure to low-dose radiation disrupts reproduction and shortens survival of Wasmannia auropunctata (Hymenoptera: Formicidae) Queens. Journal of Economic Entomology 105: 817–822. https://doi.org/10.1603/EC11374

Charlotta Nilsson E.J., Ingemar Jönsson K. & Pallon J. (2010). Tolerance to proton irradiation in the eutardigrade Richtersius coronifer a nuclear microprobe study. International Journal of Radiation Biology 86: 420–427. https://doi.org/10.3109/09553000903568001

Coulin C., Calcaterra L.A. & Follett P.A. (2014). Fecundity and longevity of Argentine ant (Hymenoptera: Formicidae) queens in response to irradiation. Journal of Applied Entomology 138: 355–360. https://doi.org/10.1111/jen.12076

Daly M.J. (2012). Death by protein damage in irradiated cells. DNA Repair Elsevier B.V. 11: 12–21. https://doi.org/10.1016/j.dnarep.2011.10.024

Dejean A. (1975). Action des rayonnements gamma sur la longévité des reines et des ouvrières de Temnothorax recedens (Nyl.) (Formicidae, Myrmicinae). Insectes Sociaux Birkhäuser Basel 22: 237–242. https://doi.org/10.1007/BF02223075

Dushimirimana S., Hance T. & Damiens D. (2012). Comparison of reproductive traits of regular and irradiated male desert locust Schistocerca gregaria (Orthoptera: Acrididae): Evidence of last-male sperm precedence. Biology Open 1: 232–236. https://doi.org/10.1242/bio.2012323

Enzmann E.V. & Haskins C.P. (1938). On the use of Drosophila melanogaster as a tool in the study of delayed killing by X-rays. The American Naturalist Science Press 72: 184–189. https://doi.org/10.1086/280776

Follett P.A. (2018). Irradiation for quarantine control of coffee berry borer, Hypothenemus hampei (Coleoptera: Curculionidae: Scolytinae) in coffee and a proposed generic dose for snout beetles (Coleoptera: Curculionoidea). Journal of Economic Entomology 111 (4): 1633–1637. https://doi.org/10.1093/jee/toy123

Follett P.A. & Taniguchi G. (2007). Effect of irradiation on the longevity and reproduction of Pheidole megacephala (Hymenoptera: Formicidae) queens. Proceedings of the Hawaiian Entomological Society 39: 43–48. Available from http://scholarspace.manoa.hawaii.edu/bitstream/10125/841/1/phes-39-43-48.pdf [accessed 2 Oct. 2024].

Follett P.A., Porcel S. & Calcaterra L.A. (2016). Effect of irradiation on queen survivorship and reproduction in the invasive fire ant Solenopsis invicta (Hymenoptera: Formicidae) and a proposed phytosanitary irradiation treatment for ants. Journal of Economic Entomology 109: 2348–2354. https://doi.org/10.1093/jee/tow207

Fortunato A., Fleming A., Aktipis A. & Maley C.C. (2021). Upregulation of DNA repair genes and cell extrusion underpin the remarkable radiation resistance of Trichoplax adhaerens. PLoS Biology 19: 1–20. https://doi.org/10.1371/journal.pbio.3001471

Gadau J., Helmkampf M., Nygaard S., Roux J., Simola D.F., Smith C.R., Suen G., Wurm Y. & Smith C.D. (2012). The genomic impact of 100 million years of social evolution in seven ant species. Trends in Genetics 28: 14–21. https://doi.org/10.1016/j.tig.2011.08.005

Gecheva G.G. & Apostolova V.M. (1986). Attempts at sterilization of the cockroach Blaberus craniifer with gamma-radiation. Ekologiia 18: 40–44.

Gladyshev E. & Meselson M. (2008). Extreme resistance of bdelloid rotifers to ionizing radiation. Proceedings of the National Academy of Sciences of the United States of America 105: 5139–5144. https://doi.org/10.1073/pnas.0800966105

Harrison F. & Anderson S. (1996). Taxonomic and developmental aspects of radiosensitivity. Proceedings of the Symposium: Ionizing Radiation, the Swedish Radiation Protection Institute (SSI) and The Atomic Energy Control Board (AECB) of Canada, Stockholm, Sweden: 65–88.

Hespeels B., Penninck S., Cornet V., Bruneau L., Bopp C., Baumlé V., Redivo B., Heuskin A.-C., Moeller R., Fujimori A., Lucas S. & Van Doninck K. (2020). Iron ladies–how desiccated asexual rotifer Adineta vaga deal with X-rays and heavy ions? Frontiers in Microbiology 11: 1792. https://doi.org/10.3389/fmicb.2020.01792

Hespeels B., Fontaneto D., Cornet V., Penninckx S., Berthe J., Bruneau L., Larrick J.W., Rapport E., Bailly J., Debortoli N., Iakovenko N., Janko K., Heuskin A.C., Lucas S., Hallet B. & Van Doninck K. (2023). Back to the roots, desiccation and radiation resistances are ancestral characters in bdelloid rotifers. BMC Biology 21: 1–16. https://doi.org/10.1186/s12915-023-01554-w

Horikawa D.D., Sakashita T., Katagiri C., Watanabe M., Kikawada T., Nakahara Y., Hamada N., Wada S., Funayama T., Higashi S., Kobayashi Y., Okuda T. & Kuwabara M. (2006). Radiation tolerance in the tardigrade Milnesium tardigradum. International Journal of Radiation Biology 82: 843–848. https://doi.org/10.1080/09553000600972956

Hothorn T., Bretz F. & Westfall P. (2008). Simultaneous inference in general parametric models. Biometrical Journal 50 (3): 346–363. https://doi.org/10.1002/bimj.200810425

Jönsson K.I., Harms-Ringdahl M. & Torudd J. (2005). Radiation tolerance in the eutardigrade Richtersius coronifer. International Journal of Radiation Biology 81: 649–656. https://doi.org/10.1080/09553000500368453

Keller L. & Passera L. (1989). Size and fat content of gynes in relation to the mode of colony founding in ants (Hymenoptera; Formicidae). Oecologia 80: 236–240. https://doi.org/10.1007/BF00380157

Kiran R., Shenoy K.B. & Venkatesha M.G. (2019). Effect of gamma radiation as a post-harvest disinfestation treatment against life stages of the coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera: Curculionidae). International Journal of Radiation Biology 95: 1301–1308. https://doi.org/10.1080/09553002.2019.1619950

Kramer B.H., Schaible R. & Scheuerlein A. (2016). Worker lifespan is an adaptive trait during colony establishment in the long-lived ant Lasius niger. Experimental Gerontology 85: 18–23. https://doi.org/10.1016/j.exger.2016.09.008

Krisko A. & Radman M. (2010). Protein damage and death by radiation in Escherichia coli and Deinococcus radiodurans. Proceedings of the National Academy of Sciences of the United States of America 107: 14373–14377. https://doi.org/10.1073/pnas.1009312107

Krisko A., Leroy M., Radman M. & Meselson M. (2012). Extreme anti-oxidant protection against ionizing radiation in bdelloid rotifers. Proceedings of the National Academy of Sciences of the United States of America 109: 2354–2357. https://doi.org/10.1073/pnas.1119762109

Lach L. (2021). Invasive ant establishment, spread, and management with changing climate. Current Opinion in Insect Science 47: 119–124. https://doi.org/10.1016/j.cois.2021.06.008

Lim S., Jung J.H., Blanchard L. & De Groot A. (2019). Conservation and diversity of radiation and oxidative stress resistance mechanisms in Deinococcus species. FEMS Microbiology Reviews 43: 19–52. https://doi.org/10.1093/femsre/fuy037

Mole R.H. (1984). The LD50 for uniform low LET irradiation of man. British Journal of Radiology 57: 355–369. https://doi.org/10.1259/0007-1285-57-677-355

Orwell G. (1945). You and the atomic bomb. The Tribune 19: 1961.

Paithankar J.G., Ghodke T.S. & Patil R.K. (2022). Insight into the evolutionary profile of radio-resistance among insects having intrinsically evolved defense against radiation toxicity. International Journal of Radiation Biology 98: 1012–1024. https://doi.org/10.1080/09553002.2020.1859153

Perrault G.H. & Castet R. (1988). Recensement du peuplement en fourmis d’un écosystème forestier méditerranéen soumis à une irradiation gamma chronique. Radioprotection 23: 45–64. https://doi.org/10.1051/radiopro/19882301045

Portha S., Deneubourg J.L. & Detrain C. (2004). How food type and brood influence foraging decisions of Lasius niger scouts. Animal Behaviour 68: 115–122. https://doi.org/10.1016/j.anbehav.2003.10.016

Reindl J., Abrantes A.M., Ahire V., Azimzadeh O., Baatout S., Baeyens A., Baselet B., Chauhan V., Da Pieve F., Delbart W., Dobney C.P., Edin N.F.J., Falk M., Foray N., François A., Frelon S., Gaipl U.S., Georgakilas A.G., Guipaud O., Hausmann M., Michaelidesova A.J., Kadhim M., Marques I.A., Milic M., Mistry D., Moertl S., Montoro A., Obrador E., Pires A.S., Quintens R., Rajan N., Rödel F., Rogan P., Savu D., Schettino G., Tabury K., Terzoudi G.I., Triantopoulou S., Viktorsson K. & Wozny A.-S. (2023). Molecular Radiation Biology. In: Baatout S. (ed.) Radiobiology Textbook: 83–189. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-031-18810-7_3

RStudio Team (2015). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA. Available from http://www.rstudio.com/

Ryabova A., Mukae K., Cherkasov A., Cornette R., Shagimardanova E., Sakashita T., Okuda T., Kikawada T. & Gusev O. (2017). Genetic background of enhanced radioresistance in an anhydrobiotic insect: transcriptional response to ionizing radiations and desiccation. Extremophiles 21: 109–120. https://doi.org/10.1007/s00792-016-0888-9

Stockmann R., Ythier E. & Fet V. (2010). Scorpions of the World. NAP editions.

Torossian C., Causse R. & Montfavet F. (1967). Effets des radiations Gamma sur la fertilité et la longévité des colonies de Dolichoderus quadripunctatus (Hyménoptère: Formicoidea Dolichoderidae). Isotopes and Radiation in Entomology Citeseer 155.

Von Zallinger C. & Tempel K. (1998). The physiologic response of domestic animals to ionizing radiation: A review. Veterinary Radiology and Ultrasound 39: 495–503. https://doi.org/10.1111/j.1740-8261.1998.tb01639.x

Watanabe M., Sakashita T., Fujita A., Kikawada T., Nakahara Y., Hamada N., Horikawa D.D., Wada S., Funayama T., Kobayashi Y. &. Okuda T. (2006). Estimation of radiation tolerance to high LET heavy ions in an anhydrobiotic insect, Polypedilum vanderplanki. International Journal of Radiation Biology 82: 835–842. https://doi.org/10.1080/09553000600979100

Watanabe M., Nakahara Y., Sakashita T., Kikawada T., Fujita A., Hamada N., Horikawa D.D., Wada S., Kobayashi Y. & Okuda T. (2007). Physiological changes leading to anhydrobiosis improve radiation tolerance in Polypedilum vanderplanki larvae. Journal of Insect Physiology 53: 573–579. https://doi.org/10.1016/j.jinsphys.2007.02.008

Zedek F. & Bureš P. (2019). Pest arthropods with holocentric chromosomes are more resistant to sterilizing ionizing radiation. Radiation Research Radiation Research Society 191: 255–261. https://doi.org/10.1667/RR15208.1

Downloads

Published

2024-10-03

How to Cite

Vastrade, M., Cornet, V., Heuskin, A.-C., & Hespeels, B. (2024). Ant-icipating the fallout: a study on the radioresistance of the black garden ant Lasius niger. Belgian Journal of Zoology, 154, 161–178. https://doi.org/10.26496/bjz.2024.194

Issue

Section

Articles