Early formation of the coelomo-cardiovascular complex in the chick blastoderm

Authors

  • Marc Callebaut Laboratory of Human Anatomy and Embryology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
  • Emma Van Nueten Laboratory of Human Anatomy and Embryology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
  • Guy Hubens Laboratory of Human Anatomy and Embryology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
  • Fernand Harrison Laboratory of Human Anatomy and Embryology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium

DOI:

https://doi.org/10.26496/bjz.2010.190

Keywords:

chick embryo, mosaic development, Rauber-Koller’s sickle, sickle horns, coelomo-cardiovascular system, coelomates

Abstract

Although it is known that small areas in the unincubated avian blastoderm undergo regulation under influence of the surrounding large Rauber’s (Koller’s) sickle-dependent anlage fields, this seems not to be true for these anlage fields themselves. Indeed, after removal of whole anlage fields or regions in the unincubated avian blastoderms, no restoration of a complete embryo occurs, suggesting predisposition (mosaicism). In the unincubated chicken blastoderm, in the absence of Rauber’s (Koller’s) sickle horn regions, the isolated median region (with included middle part of Rauber-Koller’s sickle) is not able, after culture, to give rise to primary heart tubes. Our present study indicates that the earliest anlage field of the coelomo-cardiovascular system in the unincubated chicken blastoderm (giving rise to both the area vasculosae laterales and the area vasculosa caudalis) is localized in the upper layer between the definitive endoderm anlage field (in the concavity of Rauber-Koller’s sickle) and the more rostral and lateral neighbouring sickle-shaped lateral plate anlage.

References

Bisaha JG, Bader D (1991). Identification and characterization of a ventricular-specific avian myosin heavy chain, VMHC1; expression in differentiating cardiac and skeletal muscle. Developmental Biology, 148:355-364.

Callebaut M & Van Nueten E (1994). Rauber’s (Koller’s sickle); The early gastrulation organizer of the avian blastoderm. European Journal of Morphology, 32:35-48.

Callebaut M, Van Nueten E, Bortier H & Harrisson F (2002a). In the absence of Rauber’s sickle material, no blood islands are formed in the avian blastoderm. Journal of Morphology, 253:132-147.

Callebaut M, Van Nueten E, Bortier H & Harrisson F (2003a). Positional information by Rauber's sickle and a new look at the mechanisms of primitive streak initiation in avian blastoderms. Journal of Morphology, 255:315-327.

Callebaut M, Van Nueten E, Bortier H & Harrisson F (2003b). Rauber’s sickle generates only extraembryonic tissues (junctional- and sickle endoblast), and, by positional information, organizes and dominates the whole avian blastoderm (gastrulation, neurulation and blood island formation). Belgian Journal of Zoology, 133(1):45-59.

Callebaut M, Van Nueten E, Bortier H & Harrisson F (2004). Induction of the avian coelom with associated vitelline blood circulation by Rauber’s sickle derived junctional endoblast and its fundamental role in Heart formation. Journal of Morphology, 259:21-32.

Callebaut M, Van Nueten E, Harrisson F & Bortier H (1996). Map of the Anlage fields in the avian unincubated blastoderm. European Journal of Morphology, 34(5):347- 361.

Callebaut M, Van Nueten E, Harrisson F & Bortier H (2000). Mechanisms of caudocephalic axis formation in the avian germ disc. Belgian Journal of Zoology, 130(1):67-79.

Callebaut M, Van Nueten E, Harrisson F & Bortier H (2002b). Rauber’s sickle and not the caudal marginal zone induces a primitive streak, blood vessels, blood cell formation and coelomic vesicles in avian blastoderms. European Journal of Morphology, 48:275-282.

Callebaut M, Van Nueten E, Harrisson F & Bortier H (2007). Mosaic Versus Regulation Development in Avian Blastoderms Depends on the Spatial Distribution of Rauber’s Sickle Material. Journal of Morphology, 268:614-623.

Callebaut M, Van Nueten E, Van Passel H, Harrisson F & Bortier H (2006). Early steps in neural development. Journal of Morphology, 267:793-802.

Conklin E (1905). Mosaic development in ascidian eggs. Journal Experimental Zoology, 10:393 (cited by Fautrez, 1967).

Dollander A & Fenart R (1973). Elements d’embryologie. (368 pp) second edition Flammarion Paris.

Garcia-Martinez V & Schoenwolf G (1993). Primitive streak origin of the cardiovascular system in avian embryos. Developmental Biology, 159:706-719.

Gräper L (1929.) Die Primitiventwicklung des Hünhchens nach stereo-kinematographischer Untersuchungen, kontroliert durch vitale Farbmarkierung und verglichen mit der Entwicklung anderer Wirbeltiere. Roux’ Archives, 116:382- 429.

Gordon-Thomson C & Fabian B (1994). Hypoblastic tissue and fibroblast growth factor induce blood tissue (haemoglobin) in the early chick embryo. Development, 120:3571- 3579.

Hamburger V & Hamilton H (1951). A series of normal stages in the development of the chick embryo. Journal Morphology, 88:49-92.

Han Y, Dennis J, Cohen-Gould L, Bader D & Fischmann D (1992). Expression of sarcomeric myosin in the presumptive myocardium of chicken embryos occurs within six hours of myocyte commitment. Developmental Dynamics, 193:257- 265.

Hatada Y & Stern C (1994). A fate map of the epiblast of the early chick embryo. Development, 120:2879-2889.

Kawaguchi M, Bader D & Wilm B (2007). Serosal mesothelium retains vasculogenic potential. Developmental Dynamics, 236:2973-2979.

Le Douarin N & Halpern M (2000). Discussion point. Origin and specification of the neural tube floor plate; insights from the chick and zebrafish. Current Opinion in Neurobiology, 10:23-30.

Lopez-Sanchez C, Garcia-Martinez V & Schoenwolf GC (2001). Localization of cells of the prospective neural plate, heart and somites within the primitive streak and epiblast of avian embryos at intermediate primitive streak stages. Cells Tissues Organs, 169:334-346.

Lutz H (1949). Sur la production expérimentale de la polyembryonie et de la monstruosité double chez les oiseaux. Archives d’ Anatomie Microscopiques et de Morphologie Experimentale, 39:79-144.

Lutz H, Departout M, Hubert J & Pieau C (1963). Contribution à l’étude de la potentialité du blastoderme non incubé chez les oiseaux. Developmental Biology, 6:23-44.

Männer J (1999). Does the subepicardial mesenchyme contributes myocardioblasts to the myocardium of the chick embryo heart? A quail-chicken chimera study tracing the fate of the epicardial primordium. Anatomical Record, 255:212-226.

Martinsen B (2005). Reference guide to the stages of chick heart embryology. Developmental Dynamics, 233:1217- 1237.

Mikawa T & Gourdie RG (1996). Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Developmental Biology, 174:221-232.

Pasteels J (1937). Etudes sur la gastrulation des vertébrés méroblastiques, III Oiseaux, IV Conclusions Générales. Archives Biologiques, 48:381-488.

Rauber A (1876). Über die Stellung des Hünchens im Entwicklungsplan. W Engelmann, Leipzig.

Spratt N (1947). A simple method for explanting and cultivating early chick embryos in vitro. Science, 106:452.

Spratt N & Haas H (1960). Integrative mechanisms in development of the early chick blastoderm. I Regulative potentiality of Separated Parts. Journal Experimental Zoology, 145:97-137.

Vakaet L (1962). Pregastrulatie en gastrulatie der Vogelkiem. PhD Thesis, University of Ghent, Belgium.

Vakaet L (1985). Morphogenetic movements and fate maps in the avian blastoderm. In: Molecular Determinants of Animal Form. Alan R Liss Inc.: 99-109

Walmsley M, Ciau-Uitz A & Patient R (2002). Adult and embryonic blood and endothelium derive from distinct precursor populations which are differentially programmed by BMP in Xenopus. Development,129:5683-5695.

Wetzel R (1929). Untersuchungen am Hühnchens. Die Entwicklung des Keims während der ersten beiden Bruttage. Roux’ Archives, 119:188-321.

Yatskievych T, Ladd A & Antin P (1997). Induction of cardiac myogenesis in avian pregastrula epiblast; the role of the hypoblast and activin. Development, 124:2561-2570.

Downloads

Published

2024-09-05

How to Cite

Callebaut, M., Van Nueten, E., Hubens, G., & Harrison, F. (2024). Early formation of the coelomo-cardiovascular complex in the chick blastoderm. Belgian Journal of Zoology, 140(1), 65–73. https://doi.org/10.26496/bjz.2010.190

Issue

Section

Articles