Hurdles in investigating UVB damage in the putative ancient asexual Darwinula stevensoni (Ostracoda, Crustacea)

Authors

  • Lynn Van den Broecke Royal Belgian Institute of Natural Sciences, Freshwater Biology, Vautierstraat 29, 1000 Brussels, Belgium
  • Jacques Vanfleteren University of Ghent, Biology, K.L. Ledeganckstraat 35, 9000 Gent, Belgium
  • Koen Martens Royal Belgian Institute of Natural Sciences, Freshwater Biology, Vautierstraat 29, 1000 Brussels, Belgium
  • Isa Schön Royal Belgian Institute of Natural Sciences, Freshwater Biology, Vautierstraat 29, 1000 Brussels, Belgium

DOI:

https://doi.org/10.26496/bjz.2013.131

Keywords:

Darwinula stevensoni, ancient asexual, DNA repair

Abstract

Ostracoda or mussel-shrimps are small, bivalved Crustacea. Because of their excellent fossil record and their broad variety of reproductive modes, ostracods are of great interest as a model group in ecological and evolutionary research. Here, we investigated damage and repair from one of the most important biological mutagens, namely UVB radiation, in the putative ancient asexual ostracod Darwinula stevensoni from Belgium. We applied three different methods: the Polymerase Inhibition (PI) assay, Enzyme-Linked Immuno Sorbent Assay (ELISA) and dot blot. All three techniques were unsuccessful in quantifying UVB damage in D. stevensoni. Previous experiments have revealed that the valves of D. stevensoni provide an average UVB protection of approximate 60%. Thus, UVB damage could be too little to make quantitative experiments work. Additionally, variation between individual ostracods due to season and age most likely contributed further to the failure of the three used experimental approaches to quantify damage. In a second experiment, we investigated the influence of temperature on survival of D. stevensoni during UVB exposure. The estimated relative lethal UVB dose at 4°C was with 50 kJ/m2, significantly lower than at room temperature, with 130 kJ/m2. This could either indicate lack of adaptation to low temperatures and/or the presence of metabolic processes active at room temperature protecting against UVB damage in D. stevensoni. The latter possibility could also explain why the estimated relative lethal UVB dose of D. stevensoni is similar to that of other non-marine ostracods where valves provide around 80% protection, despite the valves of D. stevensoni providing less protection. If such metabolic processes can repair UVB damage quickly, this may provide an alternative explanation why we could not quantify UVB damage in D. stevensoni.

References

Butlin RK, Schön I & Griffiths HI (1998). Introduction to reproductive modes. In: Martens K (ed), Sex and parthenogenesis: evolutionary ecology of reproductive modes in non-marine ostracods. Backhuys Publishers, Leiden:1-24.

Connelly SJ, Moeller RE, Sanchez G & Mitchell DL (2009). Temperature effects on survival and DNA repair in four freshwater cladoceran Daphnia species exposed to UV radiation. Photochemistry and Photobiology, 85: 144-152.

Friedberg EC, Walker GC & Siede W (1995). DNA Repair and Mutagenesis. ASM Press, Washington DC.

Geiger W (1998). Population dynamics, life histories and reproductive modes. In: Martens K (ed), Sex and parthenogenesis: evolutionary ecology of reproductive modes in non-marine ostracods. Backhuys Publishers, Leiden:215-228.

Girish V & Vijayalakshmi A (2004). Affordable image analysis using NIH Image/Image J. Indian Journal of Cancer, 41:47.

Gonçalves RJ, Villafañe VE & Helbling EW (2002). Photorepair activity and protective compounds in two freshwater zooplankton species (Daphnia menucoensis and Metacyclops mendocInus) from Patagonia, Argentina. Photo-chemical & Photobiological Sciences, 1:996-1000.

Govan HL, Valles-Ayoub Y & Braun J (1990). Fine-mapping of DNA damage and repair in specific genomic segments. Nucleic Acids Research, 18:3823-3830.

Grad G, Burnett BJ & Williamson CE (2003). UV damage and photoreactivation: timing and age are everything. Photochemistry and Photobiology, 78:225-227.

Grad, G, Williamson CE & Karapelou DM (2001). Zooplankton survival and reproduction responses to damaging UV radiation: a test of reciprocity and photoenzymatic repair. Limnology and Oceanography, 46:584-591.

Hessen DO (1996). Competitive trade-off strategies in Arctic Daphnia linked to melanism and UV-B stress. Polar Biology, 16:573-576.

Holmes J.A & Chivas A (2002). The Ostracoda: Applications in Quaternary Research. American Geophysical Union, Washington DC.

Horne d, Homes j, Finnberg v & Rodriquez-Lazaro j (2012) Ostracoda as Proxies for Quaternary Climate Change, Volume 17 (Develop-ments in Quaternary Science).

Huebner JD, Young DLW, Loadman NL, Lentz VJ & Wiegand MD (2006). Age-dependent survival, reproduction and photorepair activity in Daphnia magna (Straus, 1820) after exposure to artificial ultraviolet radiation. Photochemistry and Photobiology, 82:1656-1661.

Hurtubise RD, Havel JE & Little EE (1998). The effects of ultraviolet-B radiation on freshwater invertebrates: experiments with a solar simulator. Limnology and Oceanography, 43:1082-1088.

Jagger J & Stafford RS (1965). Evidence for Two Mechanisms of Photoreactivation in Escherichia coli B. Biophysical Journal, 5:75-88.

Jenkins GJS, Burlinson B & Parry JM (2000). The Polymerase Inhibition Assay: a Methodology for the Identification of DNA-damage Agents. Molecular Carcinogenesis, 27:289-297.

Kalinowski DP, McCready SJ, Osman F & Yasui A (2000). Repair of UV damage in the fission yeast Schizosaccharomyces pombe. Mutation Research, 251:197-210.

Lamare MD, Barker MF, Lesser MP & Marshall C (2006). DNA photorepair in echinoid embryos: Effects of temperature on repair rate in Antarctic and non-Antarctic species. Journal of Experimental Biology, 209:5017-5028.

Leech DM & Williamson CE (2000). Is tolerance to ultraviolet radiation in zooplankton related to body size, taxon, or lake transparency? Journal of Applied Ecology, 10:1530-1540.

MacFadyen EJ, Williamson CE, Grad G, Lowery M, Jeffrey WH & Mitchell DL (2004). Molecular response to climate change: temperature dependence of UV- induced DNA damage and repair in the freshwater crustacean Daphnia pulicaria. Global Change Biology, 10: 408-416.

Martens K (1998). Sex and Parthenogenesis – Evolutionary Ecology of Reproductive Modes in Non-marine Ostracods. Backhuys Publishers, Leiden.

Martens K, Rossetti G & Horne DJ (2003). How ancient are ancient asexuals? Proceedings of the Royal Society B: Biological Sciences, 270:723-729.

Martens K, Schön I, Meisch C & Horne DJ (2008). Global diversity of ostracods (Ostracoda, Crustacea) in freshwater. Hydrobiologia, 595: 185-193.

McGRegor DL (1969). The reproductive potential, life history and parasitism of the freshwater ostracod DarwInula stevensoni. In: Neale JW (ed), The taxonomy, morphology and ecology of recent Ostracoda. Oliver & Boyd, Edinburgh: 194-221.

Mitchell DL & Karentz D (1993). The induction and repair of DNA photodamage in the environment. In: Young AR, Björn LO, Moan J & Nultsch W (eds), Environmental UV photobiology, Plenum Press:345-371.

Moresino RDH & Helbling EW (2010). Combined effects of UVR and temperature on the survival of crab larvae (Zoea I) from Patagonia: The role of UV-absorbing compounds. Marine Drugs, 8(5): 1681-1698.

Ramos-Jiliberto R, Dauelsberg P & Zúňiga LR (2004). Differential tolerance to ultraviolet-B light and photoenzymatic repair in cladocerans in a Chilean lake. Marine & Freshwater Research, 55:193-200.

Ranta E (1979). Population biology of DarwInula stevensoni (Crustacea, Ostracoda) in an oligo-trophic lake. Annales Zoologici Fennici, 16:28-35.

Rautio M & Tartarotti B (2010). UV radiation and freshwater zooplankton: damage, protection and recovery. Freshwater Reviews, 3(2):105-131.

Sancar A (1994a). Mechanisms of DNA excision repair. Science, 266:1954-1956.

Sancar A (1994b). Structure and function of DNA photolyase. Biochemistry, 33:2-9.

Sancar A & Tang M (1993). Nucleotide excision repair. Photochemistry and Photobiology, 57: 905-921.

Sawada M & Enesco HE (1984). Effects of UV radiation on the lifespan of the rotifer Asplanchna brightwelli. Experimental Gerontology, 19:289-296.

Schön I & Martens K (1998). DNA repair in ancient asexuals – a new solution to an old problem? Journal of Natural History, 32:943-948.

Schön I & Martens K (2003). No slave to sex. Proceedings of the Royal Society B: Biological Sciences, 270:827-833.

Schön I, Rossetti G & Martens K (2009). Darwinulid ostracods: ancient scandals or scandalous gossip. In: Schön I, Martens K & van Dijk P (eds), Lost sex. Springer, The Netherlands:217-240.

Schön I, Butlin RK, Griffiths HI & Martens K (1998). Slow molecular evolution in an ancient asexual ostracod. Proceedings of the Royal Society B: Biological Sciences, 265:235-242.

Setlow RB, Grist E, Thompson K & Woodhead AD (1993). Wavelengths effective in induction of malignant melanoma. Proceedings of the National Academy of Sciences of the United States of America, 90:6666-6670.

Siebeck O & Böhm U (1991). UV-B effects on aquatic animals. Verhandlungen der Interna-tionalen Vereinigung für theoretische und angewandte Limnologie, 24:2773-2777.

Sinha RP & Häder D-P (2002). UV-induced DNA damage and repair: a review. Photochemical & Photobiological Sciences, 1:225-236.

Sinha RP, Dautz M & Häder D-P (2001). A simple and efficient method for the quantitative analysis of thymine dimers in Cyanobacteria, Phytoplankton and Macroalgae. Acta Protozoologica, 40:187-195.

Straub EB (1952). Mikropaläontologische Untersuchungen im Tertiär zwischen Ehingen und Ulm a.d. Donau. Geologisches Jahrbuch, 66:433-523.

Strutzman PL (1999). A comparative study of ultraviolet radiation in different populations of Diaptomus minutes. Journal of Plankton Research, 21:387-400.

Sutherland BM (1981). Photoreactivation. Bioscience, 31:439-444.

Tartarotti B, Cabrera S, Psenner R & Sommaruga R (1999). Survivorship of Cyclops abyssorum tatricus (Cyclopoida, Copepoda) and Boeckella gracilipes (Calanoida, Copepoda) under ambient levels of solar UVB radiation in two high-mountain lakes. Journal of Plankton Research, 21:549-560.

Tartarotti B, Cravero W & Zagarese HE (2000). Biological weighting function for the mortality of Boeckella gracilipes (Copepods, Crustacea) derived from experiments with natural solar radiation. Photochemistry and Photobiology, 73:314-319.

Van den Broecke L, Martens K, Pieri V & Schön I (2012). Ostracod valves as efficient UV protection. Journal of Limnology, 71(1):119-124.

Van Doninck K, Schön I, De Bruyn L & Martens K (2002). A general purpose genotype in an ancient asexual. Oecologia, 132:205-212.

Van Doninck K, Schön I, Martens K & Goddeeris B (2003). The life-cycle of the ancient asexual ostracod DarwInula stevensoni (Brady & Robertson, 1870) (Crustacea, Ostracoda) in a temporate pond. Hydrobiologia, 500:331-340.

Vega MP & Pizarro R (2000). Lethal effect induced by ultraviolet-B in a planktonic copepod: role of the post-irradiation time on mortality measurements. Journal of Freshwater Ecology, 15:1-5.

Williamson CE, Grad G, de Lange HJ, Gilroy S & Karapelou DM (2002). Temperature-dependent ultraviolet responses in zooplankton: implications of climate change. Limnology and Oceanography, 47:1844-1848.

Williamson CE, Neale PJ, Grad G, de Lange HJ & Hargreaves BR (2001). Beneficial and detrimental effects of UV on aquatic organisms: implications of spectral variation. Journal of Applied Ecology, 11:1843-1857.

Zagarese HE, Feldman M & Williamson CE (1997). UV-B induced damage and photoreactivation in three species of Boeckella (Copepods, Calanoida). Journal of Plankton Research, 19:357-367.

Downloads

Published

2024-03-13

How to Cite

Van den Broecke, L., Vanfleteren, J., Martens, K., & Schön, I. (2024). Hurdles in investigating UVB damage in the putative ancient asexual Darwinula stevensoni (Ostracoda, Crustacea). Belgian Journal of Zoology, 143(2), 106–118. https://doi.org/10.26496/bjz.2013.131

Issue

Section

Articles