Autecology of the extant ostracod fauna of Lake Ohrid and adjacent waters - a key to paleoenvironmental reconstruction

Authors

  • Julia Lorenschat Institut für Geosysteme und Bioindikation, Technische Universität Braunschweig, Langer Kamp 19c, 38106 Braunschweig, Germany
  • Antje Schwalb Institut für Geosysteme und Bioindikation, Technische Universität Braunschweig, Langer Kamp 19c, 38106 Braunschweig, Germany

DOI:

https://doi.org/10.26496/bjz.2013.123

Keywords:

freshwater Ostracoda, endemism, ancient lakes, multivariate analysis, training set

Abstract

Understanding the ecology of bioindicators such as ostracods is essential in order to reconstruct past environmental and climate change from analysis of fossil assemblages preserved in lake sediment cores. Knowledge of the ecology of ancient Lake Ohrid’s ostracod fauna is very limited and open to debate. In advance of the Ohrid ICDP-Drilling project, which has potential to generate high-resolution long-term paleoenvironmental data of global importance in paleoclimate research, we sampled Lake Ohrid and a wide range of habitat types in its surroundings to assess 1) the composition of ostracod assemblages in lakes, springs, streams, and short-lived seasonal water bodies, 2) the geographical distribution of ostracods, and 3) the ecological characteristics of individual ostracod species. In total, 40 species were collected alive, and seven species were preserved as valves and empty carapaces. Of the 40 ostracod species, twelve were endemic to Lake Ohrid. The most common genus in the lake was Candona, represented by 13 living species, followed by Paralimnocythere, represented by five living species. The most frequent species was Cypria obliqua. Species with distinct distributions included Heterocypris incongruens, Candonopsis kingsleii, and Cypria lacustris. The most common species in shallow, flooded areas was H. incongruens, and the most prominent species in ditches was C. kingsleii. C. lacustris was widely distributed in channels, springs, lakes, and rivers. Statistical analyses were performed on a “Lake Ohrid” dataset, comprising the subset of samples from Lake Ohrid alone, and an “entire” dataset comprising all samples collected. The unweighted pair group mean average (UPGMA) clustering was mainly controlled by species-specific depth preferences. Canonical Correspondence Analysis (CCA) with forward selection identified water depth, water temperature, and pH as variables that best explained the ostracod distribution in Lake Ohrid. The lack of significance of conductivity and dissolved oxygen in CCA of Ohrid data highlight the uniformity across the lake of the well-mixed waters. In the entire area, CCA revealed that ostracod distribution was best explained by water depth, salinity, conductivity, pH, and dissolved oxygen. Salinity was probably selected by CCA due to the presence of Eucypris virens and Bradleystrandesia reticulata in short-lived seasonal water bodies. Water depth is an important, although indirect, influence on ostracod species distribution, which is probably associated with other factors such as sediment texture and food supply. Some species appeared to be indicators for multiple environmental variables, such as lake level and water temperature.

References

Albrecht C, Hauffe T, Schreiber K, Trajanovski S & Wilke T (2009). Mollusc biodiversity and endemism in the potential ancient Lake Trichonis, Greece. Malacologia, 51:357-375.

Albrecht C & Wilke T (2008). Ancient Lake Ohrid:biodiversity and evolution. Hydrobiologia, 615:103-140.

Aliaj S, Baldassarre G & Shkupi D (2001). Quaternary subsidence zones in Albania:some case studies. Bulletin of Engineering Geology and the Environment, 59:313-318.

Aufgebauer A, Panagiotopoulos K, Wagner B, Schaebitz F, Viehberg FA, Vogel H, Zan-chetta G, Sulpizio R, Leng MJ & Damaschke M (2012). Climate and environmental change in the Balkans over the last 17 ka recorded in sediments from Lake Prespa (Albania/F.Y.R. of Macedonia/Greece). Quaternary International, 274:122-135.

Belmecheri S, Namiotko T, Robert C, von Grafenstein U & Danielopol DL (2009). Climate controlled ostracod preservation in Lake Ohrid (Albania, Macedonia). Palaeogeography, Palaeoclimatology, Palaeoecology, 277:236-245.

Bunbury J & Gajewski K (2005). Quantitative analysis of freshwater ostracode assemblages in southwestern Yukon Territory, Canada. Hydrobiologia, 545:117-128.

De Deckker P & Forester RM (1988). The use of ostracods to reconstruct continental palaeoenvironmental records. In: De Deckker P, Colin JP & Peypouquet JP (eds), Ostracoda in the earth sciences, Elsevier, Amsterdam:175-199.

Delorme LD (1969). Ostracodes as Quaternary paleoecological indicators. Canadian Journal of Earth Sciences, 6:1471-1476.

Frogley MR, Griffiths HI & Heaton THE (2001). Historical biogeography and Late Quaternary environmental change of Lake Pamvotis, Ioannina (north-western Greece): evidence from ostracods. Journal of Biogeography, 28:745-756.

Frogley MR & Preece RC (2004). A faunistic review of the modern and fossil molluscan fauna from Lake Pamvotis, Ioannina, an ancient lake in NW Greece:implications, for endemism in the Balkans. In: Griffiths HI, Kryštufek B & Reed JM (eds), Balkan biodiversity - pattern and process in the European hotspot, Kluwer Academic Dordrecht, Boston, London:243-260.

Griffiths HI, Reed JM, Leng MJ, Ryan S & Petkovski S (2002a). The recent palaeoecology and conservation status of Balkan Lake Dojran. Biological Conservation, 104:35-49.

Griffiths SJ, Street-Perrott FA, Holmes JA, Leng MJ & Tzedakis C (2002b). Chemical and isotopic composition of modern water bodies in the Lake Kopais Basin, central Greece:analogues for the interpretation of the lacustrine sedimentary sequence. Sedimentary Geology, 148:79-103.

Hammer Ø, Harper DA & Ryan PD (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4:1-9.

Hill MO & Gauch HG (1980). Detrended correspondence analysis:an improved ordination technique. Vegetatio, 42:47-58.

Holmes JA (2001). Ostracoda. In: Smol JP, Birks HJB & Last WM (eds), Tracking environmental change using lake sediments, Zoological Indicators, Kluwer Academic Publishers, Dor-drecht:125-152.

Holmes PF (1937). Ostracoda of Lake Ohrid. Archiv für Hydrobiologie, 31:484-500.

Horne DJ (2007). A mutual temperature range method for Quaternary palaeoclimatic analysis using European nonmarine Ostracoda. Quaternary Science Reviews, 26:1398-1415.

Jordanoska B, Kunz MJ, Stafilov T & Wüest A (2010). Temporal variability of physico-chemical properties of St. Naum karst springs feeding Lake Ohrid. Ekologija i Zaštita na Životnata Sredina, 13:3-11.

Juggins S (2007). C2 Version 1.5 User guide. Software for ecological and palaeoecological data analysis and visualisation. Newcastle University, Newcastle upon Tyne, UK.

Klie W (1934). Zur Kenntnis der Ostracoden-Gattung Limnocythere. Zeitschrift für Wissenschaftliche Zoologie, 3:534-544.

Klie W (1939a). Studien über Ostracoden aus dem Ohridsee: I. Candocyprinae. Archiv für Hydrobiologie, 35:28-45.

Klie W (1939b). Studien über Ostracoden aus dem Ohridsee: II. Limnocytherinae und Cytherinae. Archiv für Hydrobiologie, 35:631-646.

Klie W (1942). Studien über Ostracoden aus dem Ohridsee: III. Erster Nachtrag. Archiv für Hydrobiologie, 38:254-259.

Kostoski G, Albrecht C, Trajanovski S & Wilke T (2010). A freshwater biodiversity hotspot under pressure - assessing threats and identifying conservation needs for ancient Lake Ohrid. Biogeosciences, 7:3999-4015.

Külköylüoglu O (2004). On the usage of ostracods (Crustacea) as bioindicator species in different aquatic habitats in the Bolu region, Turkey. Ecological Indicators, 4:139-147.

Leng MJ, Jones MD, Frogley MR, Eastwood WJ, Kendrick CP & Roberts CN (2010). Detrital carbonate influences on bulk oxygen and carbon isotope composition of lacustrine sediments from the Mediterranean. Global and Planetary Change, 71:175-182.

Löffler H, Schiller E, Kusel E & Kraill H (1998). Lake Prespa, a European natural monument, endangered by irrigation and eutrophication? Hydrobiologia, 384:69-74.

Matzinger A, Jordanoski M, Veljanoska-Sarafiloska E, Sturm B, Müller M & Wüest A (2006). Is Lake Prespa jeopardizing the ecosystem of ancient Lake Ohrid? Hydrobiologia, 553:89-109.

Meisch C (2000). Freshwater Ostracoda of Western and Central Europe. Spektrum Akademischer Verlag, Heidelberg, Berlin.

Mezquita F, Roca JR, Reed JM & Wansard G (2005). Quantifying species-environment relationships in non-marine Ostracoda for ecological and palaeoecological studies:examples using Iberian data. Palaeogeography, Palaeo-climatology, Palaeoecology, 225:93-117.

Mikulić F (1961). Nove Candona vrste iz Ohridskog Jezera. Bulletin du Muséum National d’Histoire Naturelle, 17:87-107.

Mikulić F & Pljakić MA (1970). Die Merkmale der kvalitativen Distribution der endemischen Candonaarten im Ochridsee. Ekologija 5:101-115.

Mischke S, Bößneck U, Diekmann B, Herzschuh U, Jin H, Kramer A, Wünnemann B & Zhang C (2010). Quantitative relationship between water-depth and sub-fossil ostracod assemblages in Lake Donggi Cona, Qinghai Province, China. Journal of Paleolimnology, 43:589-608.

Neale JW (1964). Some factors influencing the distribution of recent British Ostracoda. Pubblicazioni della Stazione Zoologica di Napoli, 33:247-307.

Park LE, Cohen AS, Martens K & Bralek R (2003). The impact of taphonomic processes on interpreting paleoecologic changes in large lake ecosystems:ostracodes in Lakes Tanganyika and Malawi. Journal of Paleolimnology, 30:127-138.

Petkovski TK (1960a). Süsswasserostracoden aus Jugoslawien VII. Fragmenta Balcanica, Musei Macedonici Scientiarum Naturalium, 3:99-108.

Petkovski TK (1960b). Zur Kenntnis der Crustaceen des Prespasees. Fragmenta Balcanica, Musei Macedonici Scientiarum Naturalium, 3:117-131.

Petkovski TK (1960c). Zwei neue Ostracoden aus dem Ohrid- und Prepasee. Izdanija Institut de Pisciculture de la RP Macedonie, 3:57-66.

Petkovski TK (1969a). Einige neue und bemerkenswerte Candoninae aus dem Ohridsee und einigen anderen Fundorten in Europa. Musei Macedonici scientiarum naturalium, 11:81-111.

Petkovski TK (1969b). Zwei neue Limnocythere-Arten aus Mazedonien (Crustacea-Ostracoda). Musei Macedonici scientiarum naturalium 12:1-18.

Petkovski TK & Keyser D (1992). Leptocythere ostrovskensis sp. n. (Crustacea, Ostracoda, Cytheracea) aus dem See Vegoritis (Ostrovsko Ezero) in NW Griechenland. Mit kurzer Übersicht der Süßwasserarten des Genus Leptocythere G.O. Sars, 1925 vom Westbalkan. Mitteilungen Hamburgisches Zoologisches Museum und Institut, 89:227-237.

Petkovski TK, Scharf B & Keyser D (2002). New and little known species of the genus Candona (Crustacea, Ostracoda) from Macedonia and other Balkan areas. Limnologica, 32:114-130.

Pieri V, Vandekerkhove J & Goi D (2012). Ostracoda (Crustacea) as indicators for surface water quality:a case study from the Ledra River basin (NE Italy). Hydrobiologia, 688:25-35.

Popovska C & Bonacci O (2007). Basic data on the hydrology of Lakes Ohrid and Prespa. Hydrological Processes, 21:658-664.

Popovska C & Bonacci O (2008). Ecohydrology of Dojran Lake. In: Hlavinek P, Bonacci O, Marsalek J & Mahrikova I (eds), Dangerous pollutants (Xenobiotics) in urban water cycle, NATO Science for Peace and Security Series C: Environmental Security, Springer, New York:151-160.

Reed JM, Kryštufek B & Eastwood WJ (2004). The physical geography of the Balkans and nomenclature of place names. In: Griffiths HI, Kryštufek B & Reed JM (eds), Balkan biodiversity - pattern and process in the European hotspot, Kluwer Academic Publisher, Dordrecht, Boston, London:9-22.

Reed JM, Leng MJ, Ryan S, Black S, Altinsaçli S & Griffiths HI (2008). Recent habitat degradation in karstic Lake Uluabat, western Turkey: a coupled limnological-palaeolimnological approach. Bio-logical Conservation, 141:2765-2783.

Romero JR, Kagalou I, Imberger J, Hela D, Kotti M, Bartzokas A, Albanis T, Evmirides N, Karkabounas S, Papagiannis J & Bithava A (2002). Seasonal water quality of shallow and eutrophic Lake Pamvotis, Greece: implications for restoration. Hydrobiologia, 474:91-105.

Salemaa H (1994). Lake Ohrid. Archiv für Hydrobiologie, 44:55-64.

Smith AJ & Delorme LD (2009). Ostracoda. In: Thorp JH & Covich AP (eds), Ecology and classification of North American fresh-water invertebrates, Academic Press, San Diego:725-771.

Smol JP (2002). Pollution of lakes and rivers: a paleoenvironmental perspective. Arnold Publishers, London.

Telford RJ & Birks HJB (2011a). Effect of uneven sampling along an environmental gradient on transfer-function performance. Journal of Paleolimnology, 46:99-106.

Telford RJ & Birks HJB (2011b). A novel method for assessing the statistical significance of quantitative reconstructions inferred from biotic assemblages. Quaternary Science Reviews, 30:1272-1278.

ter Braak CJF (1986). Canonical correspondence analysis:a new eigenvector technique for multivariate direct gradient analysis. Ecology, 67:1167-1179.

ter Braak CJF & Smilauer P (2002). CANOCO Reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca, New York.

Tzedakis PC (2000). Vegetation variability in Greece during the Last Interglacial. Geologie en Mijnbouw/Netherlands Journal of Geosciences, 79:355-367.

van der Meeren T, Almendinger J, Ito E & Martens K (2010). The ecology of ostracodes (Ostracoda, Crustacea) in western Mongolia. Hydrobiologia, 641:253-273.

Downloads

Published

2024-03-13

How to Cite

Lorenschat, J., & Schwalb, A. (2024). Autecology of the extant ostracod fauna of Lake Ohrid and adjacent waters - a key to paleoenvironmental reconstruction. Belgian Journal of Zoology, 143(1), 42–68. https://doi.org/10.26496/bjz.2013.123

Issue

Section

Articles