Seasonal Changes in the thermal tolerances of Odontophrynus occidentalis (Berg, 1896) (Anura: Cycloramphidae)

Authors

  • Eduardo A. Sanabria Laboratorio de Investigaciones Andrológicas de Mendoza, Instituto de Histología y Embriología de Mendoza, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro de Investigaciones en Ciencia y Técnica de Mendoza, CONICET, Mendoza, Argentina
  • Lorena B. Quiroga Departamento de Biología, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de San Juan. Av. Jose Ignacio de la Rosa y Meglioli, 5400 San Juan, Argentina
  • Adolfo L. Martino Cátedra de Ecología, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto. Ruta Nacional N° 36 - km 601, (X5804BYA) Río Cuarto, Argentina

DOI:

https://doi.org/10.26496/bjz.2013.121

Keywords:

Amphibia, Argentina, Monte Desert, seasonal acclimatization, thermal tolerance

Abstract

We studied the thermal tolerances of Odontophrynus occidentalis during the dry and wet seasons of the Monte Desert in San Juan Province, Argentina. This toad had differences in CTmax between dry and wet seasons, with CTmax values being greater in the wet season (Austral summer). Operative temperature, body temperature, and environmental maximal temperature were related to CTmax suggesting seasonal acclimatization in O. occidentalis. Additionally, the CTmax recorded for O. occidentalis was 36.1ºC, and the maximum ambient temperature measured during the toads’ activity time was 37ºC. The CTmin of O. occidentalis was 4.1ºC while the minimum environmental temperature recorded was 7.2 ºC. The wide tolerance range observed and the relationship between tolerance limits and the environmental extremes indicate that seasonal acclimatization is an effective mechanism by which toads can raise their thermal tolerance. This is a highly relevant adaptation allowing them to survive in the challenging conditions of the Monte Desert.

References

Angilletta MJ Jr (2009). Thermal adaptation a theoretical and empirical synthesis. Oxford University Press, Oxford.

Bakken GS (1992). Measurement and application of operative and standart operative temperatures in ecology. American Zoology, 32:194-216.

Brattstrom BH (1963). A preliminary review of the thermal requirements of amphibians. Ecology, 44:238-255.

Brattstrom BH (1968). Thermal aclimation in anuram amphibians as a function of latitud and altitude. Comparative Biochemistry and Physiology, 24:93-111.

Brattstrom BH & Lawrence P (1962). The rate of thermal acclimation in anuran amphibians. Physiological Zoology, 35:148-156.

Brown HA (1969). The heat resistance of some anuran tadpoles (Hylidae and Pelobatidae). Copeia, 1969:138–147.

Burke ME & Pough FH (1976). The role of fatigue in temperature resistance of salamanders. Journal of Thermal Biology, 1:163-167.

Cabrera AL (1976). Regiones fitogeográficas de la República Argentina. In: ACME (Ed.), Enciclopedia Argentina de Agricultura y Jardinería, Buenos Aires, Argentina.

Claussen D (1969). Thermal aclimatation in ambystomatid salamanders. Comparative Biochemistry and Physiology, 58A:333-340.

Cowles RB & Bogert CM (1944). A preliminary study of the thermal requirements of desert reptiles. Bulletin of the American Museum of Natural History, 83:261-296.

Cupp P (1980). Thermal tolerance of five salientian amphibians during development and metamorphosis. Herpetologica, 36:234-244.

Doughty P (1994). Critical thermal minima of garter snake (Thamnophis) depend on species and body size. Copeia, 1994:537-540.

Duellman WE & Trueb L (1986). Biology of Amphibians. McGraw-Hill Publ. Co., Baltimore, Maryland, USA.

Erskine DJ & Hutchison VH (1982). Reduced thermal tolerance in an amphibian treated with melatonin. Journal of Thermal Biology, 7:121–123.

Hammer Ø, Harper T & Ryan PD (2001). PAST: Paleontological Statistics Software Package for Education and Data Analysis. Paleontología Electrónica, 4(1):1-9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm.

Heyer WR, Donnelly MA, McDiarmid RW, Hayek LC & Foster MS (2001). Medición y monitoreo de la diversidad biológica, métodos estandarizados para anfibios. Editorial Universitaria de la Patagonia, Universidad Nacional de la Patagonia San Juan Bosco, Trelew, Chubut, Argentina.

Hill R, Wyse G & Anderson M (2006). Fisiología Animal. Editorial Médica Panamericana, Madrid, España.

Hoppe DM (1978). Thermal tolerance in tadpoles of the chorus frog Pseudacris triseriata. Herpetologica, 34:318-321.

Huey RB & Stevenson RD (1979). Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. American Zoologist, 19:357- 366.

Hutchison VH (1961). Critical thermal maxima in salamanders. Physiological Zoology, 2:92-125.

Hutchison VH & Kosh RJ (1964). The effect of photoperiod on the critical thermal maxima of painted turtles (Chrysemys picta). Herpetologica, 20:233-238.

Hutchison VH & Ferrance MR (1970). Thermal tolerances of Rana pipiens acclimated to daily temperature cycles. Herpetologica, 23:1-8.

Hutchison VH & Maness JD (1979). The role of behavior in temperature acclimation and tolerance in ectotherms. American Zoologist, 19:367-384.

Huey RB & Stevenson RD (1979). Integrating thermal physiology and ecology of ectotherms: a discussion of Approaches. American Zoologist, 19:357-366.

IUPS Thermal Commission (2003). Glossary of terms for thermal physiology, 3rd ed.. Journal of Thermal Biology, 28:75-106.

Kay I (1998). Introduction to animal physiology. BIOS Scientific publisher limited. Ferst Publisher, UK.

Navas CA, Gomes FR & Carvalho JE (2008). Review: Thermal relationship and exercise physiology in anuran amphibians: integration and evolutionary implications. Comparative Biochemistry and Physiology, 151:344-362.

Navas CA (1997). Thermal extremes at high elevations in the Andes: physiological ecology of frogs. Journal of Thermal Biology, 22:467-477.

Pough FH & Wilson RE (1970). Natural daily temperature stress, dehydration, and acclimation in juvenile Ambystoma maculatum (Shaw) (Amphibia: Caudata). Physiological Zoology, 43:194-205.

Rome L, Stevens D & John-Adler B (2002). The influence of temperature and thermal acclimatation on physiological function. In: Feder M. & Burggeren W. (eds), Environmental physiology of the amphibians:183-205.

Sanabria EA & Quiroga LB (2011a). Thermal parameters changes in males of Rhinella arenarum (Anura: Bufonidae) related to reproductive periods. International Journal of Tropical Biology, 59:347-353.

Sanabria EA & Quiroga LB (2011b). Change in the thermal biology of tadpoles of Odontophrynus occidentalis from the Monte desert, Argentina: Responses to photoperiod. Journal of Thermal Biology, 36(5): 288-291.

Sanabria EA, Quiroga LB & Martino A (2012). Seasonal Changes in the Thermal Tolerances of the Toad Rhinella arenarum (Bufonidae) in the Monte Desert of Argentina. Journal of Thermal Biology, 37:409-412.

Stebbins RC & Cohen WN (1995). Temperature caracteristics. In: A natural history of amphi-bians:89-101, Princeton University Press.

IUPS Thermal Commission (2003). Glossary of terms for thermal physiology, 3rd ed. Journal of Thermal Biology, 28:75–106.

Tracy RC, Bett G, Tracy RC & Christian KA (2007). Plaster models to measure operative temperature and evaporative water loss of amphibians. Journal of Herpetology, 41:597-603.

Ultsch GR, Bradford DF & Freda J (1999). Physiology coping with the environment. In: McDiarmid R.W. & Altig R. (eds), Tadpole: The Biology of Anuran larvae: 202-210, University of Chicago Press, Chicago, Illinois, U.S.A.

Warner TT (2004). Desert Meteorology. Cambridge University Press. New York, USA.

Whitford W (2002). Ecology of Desert Systems. Elsevier Academic Press, London.

Downloads

Published

2024-03-13

How to Cite

Sanabria, E. A., Quiroga, L. B., & Martino, A. L. (2024). Seasonal Changes in the thermal tolerances of Odontophrynus occidentalis (Berg, 1896) (Anura: Cycloramphidae). Belgian Journal of Zoology, 143(1), 23–29. https://doi.org/10.26496/bjz.2013.121

Issue

Section

Articles