Variability of pterygoid teeth in three species of Podarcis lizards and the utility of palatal dentition in lizard systematics
DOI:
https://doi.org/10.26496/bjz.2017.10Keywords:
heterochrony, paedomorphosis, peramorphosis, cryptic species, morphologyAbstract
Palatal dentition in lizards is incompletely known, especially data on its variability are scarce. We studied variation in the number of pterygoid teeth in three species of Podarcis, a species-rich genus of lacertid lizards: terrestrial, P. siculus and saxicolous, P. erhardii and P. cretensis. In contrast to some previous studies, we found no sexual dimorphism in the number of palatal teeth in any of these species. The number of teeth was not correlated to lizard size. In our sample, P. cretensis on average had more teeth than did P. erhardii but fewer than did P. siculus. In addition, some specimens of P. cretensis and P. siculus showed asymmetry in the number of pterygoid teeth, which may be a result of anthropogenic pressure. The observed variability in the occurrence of palatal dentition illustrates the importance of scoring this character in phylogenetic analyses only on the basis of a sufficient sample.References
Arnold E.N. (1973). Relationships of the Palaearctic lizards assigned to the genera Lacerta, Algyroides and Psammodromus (Reptilia: Lacertidae). Bulletin of the British Museum of Natural History, Zoology 25: 289–366.
Arnold E.N. (1989). Towards a phylogeny and biogeography of the Lacertidae: relationships within an Old-World family of lizards derived from morphology. Bulletin of the British Museum of Natural History, Zoology 55: 209–257.
Arnold E.N., Arribas O. & Carranza S. (2007). Systematics of the Palaearctic and Oriental lizard tribe Lacertini (Squamata: Lacertidae: Lacertinae), with descriptions of eight new genera. Zootaxa 1430: 1–86.
Arnold E.N. & Ovenden D. (2002). A Field Guide to the Reptiles and Amphibians of Britain and Europe. 2nd edition, Harper Collins Publishers, London.
Barahona F. & Barbadillo L.J. (1997). Identification of some Iberian lacertids using skull characters. Revista Española de Herpetologia 11: 47–62.
Barahona F. & Barbadillo L.J. (1998). Inter- and intraspecific variation in the post-natal skull of some lacertid lizards. Journal of Zoology 245: 393–405. https://doi.org/10.1111/j.1469-7998.1998.tb00114.x
Bell C.J. & Mead J.I. (2014). Not enough skeletons in the closet: collections-based anatomical research in an age of conservation conscience. Anatomical Record 297: 344–348. https://doi.org/10.1002/ar.22852
Borczyk B. & Paśko Ł. (2011). How precise are size-based age estimations in the sand lizard (Lacerta agilis)? Zoologica Poloniae 56: 11–17. https://doi.org/10.2478/v10049-011-0004-8
Brock K.M., Donihue C. & Pafilis P. (2014). New records of frugivory and ovophagy in Podarcis (Lacertidae) lizards from East Mediterranean Islands. North-Western Journal of Zoology 10: 223–225.
Conrad J.L. (2008). Phylogeny and systematics of Squamata (Reptilia) based on morphology. Bulletin of the American Museum of Natural History 310: 1–182. https://doi.org/10.1206/310.1
Costantini D., Alonso M.L., Moazen M. & Bruner E. (2010). The relationship between cephalic scales and bones in lizards: a preliminary microtomographic survey of three lacertid species. Anatomical Record 293: 183–194. https://doi.org/10.1002/ar.21048
Delaugerre M., Grita F., Lo Cascio P. & Ouni R. (2012). Lizards and Eleonora’s Falcon (Falco eleonorae Gené, 1839), a Mediterranean micro-insular commensalism. Biodiversity Journal 3: 3–12.
Evans S.E. (2008). The skull of lizards and tuatara. In: Gans C., Gaunt A. & Adler K. (eds) Biology of the Reptilia. Volume 20. Morphology H. Society for the Study of Amphibians and Reptiles, Ithaca, NY: 1–347.
Evans S.E., Jones M.E.H. & Matsumoto R. (2012). A new lizard skull from the Purbeck Limestone Group (Lower Cretaceous) of England. Bulletin de la Société géologique de France 183: 517–524. https://doi.org/10.2113/gssgfbull.183.6.517
Gauthier J.A., Kearney M., Maisano J.A., Rieppel O. & Behlke A.D.B. (2012). Assembling the squamate tree of life: perspectives from the phenotype and the fossil record. Bulletin of the Peabody Museum of Natural History 53: 3–308. https://doi.org/10.3374/014.053.0101
Klemmer K. (1957). Untersuchungen zur Osteologie und Taxionomie der europäischen Mauereidechsen. Abhandlungen der Senckenbergischen naturforschenden Gesellschaft 496: 1–56.
Lazić M.M., Kaliontzopoulou A., Carretero M.A. & Crnobrnja-Isailović J. (2013). Lizards from urban areas are more asymmetric: using fluctuating asymmetry to evaluate environmental disturbance. PLOS ONE 8: e84190. https://doi.org/10.1371/journal.pone.0084190
Lymberakis P. (2009). Podarcis cretensis. The IUCN Red List of Threatened Species 2009. Red List Unit, Cambridge: e.T157252A5060934. https://doi.org/10.2305/IUCN.UK.2009.RLTS.T157252A5060934.en
Lymberakis P., Poulakakis N., Kaliontzopoulou A., Valakos E. & Mylonas M. (2008). Two new species of Podarcis (Squamata; Lacertidae) from Greece. Systematics and Biodiversity 6: 307–318. https://doi.org/10.1017/S1477200008002727
Mahler D.L. & Kearney M. (2006). The palatal dentition in squamate reptiles: morphology, development, attachment, and replacement. Fieldiana, Zoology 108: 1–61. https://doi.org/10.3158/0015-0754(2006)108[1:TPDISR]2.0.CO;2
Mitton J.B. & Grant M.C. (1984). Associations among protein heterozygosity, growth rate, and developmental homeostasis. Annual Review of Ecology and Systematics 15: 479–499. https://doi.org/10.1146/annurev.es.15.110184.002403
Montanucci R.R. (1968). Comparative dentition in four iguanid lizards. Herpetologica 24: 305–315.
Petermann H., Mongiardino Koch N. & Gauthier J.A. (2017). Osteohistology and sequence of suture fusion reveal complex environmentally influenced growth in the teiid lizard Aspidoscelis tigris – Implications for fossil squamates. Palaeogeography, Palaeoclimatology, Palaeoecology 475: 12–22. https://doi.org/10.1016/j.palaeo.2017.02.034
Piras P., Salvi D., Ferrara G., Maiorino L., Delfino M., Pedde L. & Kotsakis T. (2011). The role of post-natal ontogeny in the evolution of phenotypic diversity in Podarcis lizards. Journal of Evolutionary Biology 24: 2705–2720. https://doi.org/10.1111/j.1420-9101.2011.02396.x
Reilly S.M., Wiley E.O. & Meinhardt D.J. (1997). An integrative approach to heterochrony: the distinction between interspecific and intraspecific phenomena. Biological Journal of the Linnean Society 60: 119–143. https://doi.org/10.1111/j.1095-8312.1997.tb01487.x
Richman J.M. & Handrigan G.R. (2011). Reptilian tooth development. Genesis – The Journal of Genetics and Development 49: 247–260. https://doi.org/10.1002/dvg.20721
Skawiński T., Borczyk B. & Turniak E. (2015). Heterochrony in the evolution of Podarcis lizards (Lacertidae): insights from cranial osteology. In: Borczyk B., Ogielska M., Kolenda K. & Skawiński T. (eds) Programme and Abstracts, SEH 18th European Congress of Herpetology, 7-12 September 2015, Wrocław: 180. University of Wrocław, Poland.
Tałanda M. (2016). Cretaceous roots of the amphisbaenian lizards. Zoologica Scripta 45: 1–8. https://doi.org/10.1111/zsc.12138
Urošević A., Ljubisavljević K., Jelić D. & Ivanović A. (2012). Variation in the cranium shape of wall lizards (Podarcis spp.): effects of phylogenetic constraints, allometric constraints and ecology. Zoology 115: 207–216. https://doi.org/10.1016/j.zool.2012.01.003
Wiens J.J. & Penkrot T.A. (2002). Delimiting species using DNA and morphological variation and discordant species limits in spiny lizards (Sceloporus). Systematic Biology 51: 69–91.
Downloads
Published
How to Cite
Issue
Section
License
All published papers will be put on-line as high resolution PDF’s. Copyright thus remains with the authors. All manuscripts will be licensed under a Creative Commons Attribution 3.0 License https://creativecommons.org/licenses/by/4.0/.