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Abstract. The microbiome of wild birds has been associated with health status and risk of disease 
development, but underlying metabolomic mechanisms are still unknown. Metabolites produced by 
microbial organisms may affect host metabolic processes and by doing so influence host health. Here 
we provide for the first time data on the faecal metabolome of wild great tits (Parus major) by analyzing 
metabolites associations with age, sex, season and body condition. Using untargeted metabolomics, we 
analyzed faecal samples from 112 great tits that were caught in a deciduous forest fragment in Flanders 
(Belgium) during late autumn and 19 animals that were re-captured during early spring. In this study, no 
significant associations between the faecal metabolites and age, sex and body condition were observed. 
However, season was shown to be a discriminating factor for the metabolomic composition of great tits, 
suggesting an impact of environmental factors.
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Introduction
Over the last 15 years, the microbiome has become an important topic in research (li et  al. 2020). 
Especially in mammalian species the microbiome has received increasing research attention due to its 
possible role in health status and risk of disease development (ley et al. 2006; Turnbaugh et al. 2009; 
Pedersen et  al. 2016). However, the mechanisms underlying microbiome-mediated health effects 
are often unclear as usually a functional readout is missing and metabolite profiles related to the gut 
microbiota could bring researchers to unknown insights (Le Gall et al. 2011; Marcobal et al. 2013; 
Vernocchi et al. 2016; Tang et al. 2019). By the production of small molecules (metabolites) that 
accumulate in the gut and circulate throughout the body, the microbiome impacts numerous aspects of 
a host’s biology (Treuren & Dodd 2020). Human studies show that the faecal metabolome largely 
reflects gut microbial composition, explaining around 70% of its variance (Zierer et al. 2018; Visconti 
et al. 2019).

In contrast to mammalian and especially human research, studies examining the gut microbiome in 
birds are rather limited (Grond et al. 2018). However, there are indications that the microbiome plays 
a pivotal role in the health of wild birds. So far, studies investigating the avian metabolome are heavily 
biased towards poultry (Beauclercq et al. 2019; Dorr et al. 2019). In great tit nestlings (Parus major; 
Phylum Chordata, Class Aves; Linnaeus 1758), a widely distributed bird species throughout Europe, 
higher diversity and stability in microbiota composition are linked to a higher relative body mass 
(Teyssier et al. 2018a). With metabolomics and the gut microbiome being so strongly related, it has 
thereby been hypothesized that beneficial effects of the microbiome on host condition and fitness are 
mediated by gut microbiome metabolites (Lamichhane et al. 2018).

The microbiome only codes microbial possibilities rather than their actual activity (Zierer et al. 2018), 
whereas the metabolome provides essential information regarding the microbial functionality (Zierer 
et al. 2018; Visconti et al. 2019). We here examine whether the faecal metabolome of great tits, as a 
proxy for the intestinal microbiome function, correlates with host fitness, by exploring the relationship 
between the faecal metabolomic composition and body condition (scaled mass index, SMI) (Peig & 
Green 2009). As the gut microbiome is linked to various life-history traits including age (Van Dongen 
et al. 2013; Teyssier et al. 2018a) and environmental factors such as alterations in food sources (Grond 
et al. 2018; Teyssier et al. 2018b), we also analyzed the associations between the faecal metabolome of 
great tits and environmental factors (season) or life-history traits (age and sex). We expected to identify 
the major drivers that influence the faecal metabolome of great tits. More specifically, we expected 
that the metabolome would be linked to the body condition of the great tits, which could lead to the 
identification of body health markers (Teyssier et al. 2018a).

Material and methods
Field study and sample collection

Great tits were captured in a 39.5 ha mixed deciduous forest fragment in Gontrode, Belgium (coordinates: 
50.975° N, 3.799° E). During the autumn of 2016 (November till early December 2016) and spring 2017 
(early March 2017), mist netting sessions and weekly night checks in nest boxes were carried out. The 
mist nets were set up twice to four times a week for approximately 4–5 hours and they were checked 
every 20 min. No animals died during the sampling protocol. All individuals were ringed and measured 
(tarsus length to the nearest 0.01 mm; wing length (to the tip of the longest primary feathers) to the 
nearest 0.5 mm and body mass to the nearest 0.1 g), aged (first-year bird or adult) and sexed (based on 
plumage characteristics; Svensson 1992). In addition, a primary physical examination was performed 
before any protocol was started. Only clinically healthy birds (e.g., no ruffled feathers, no diarrhea, no 
altered behavior or bad body condition) were sampled. In total, 112 great tits were caught during late 
autumn 2016, and 19 of these were re-captured during the early spring of 2017. Upon capture, faecal 
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samples (n = 131) were collected by placing the animals in a clean and sterilized cotton bag and faeces 
was collected from the bag surface. All samples were kept in sterile Eppendorf tubes at -70 °C until 
analysis.

The body condition was calculated using the scaled mass index (SMI) (Peig & Green 2009). This index 
adjusts the mass of all individuals to that which they would have obtained if they all had the same body 
size, using the equation of the linear regression of ln-body mass on ln-tarsus length estimated by type-
II (standardized major axis; SMA) regression (Supplementary Table 1). The faecal metabolome of the 
great tits was linked to the SMI using SimcaTM 14 (Umetrics, Malmo, Sweden), to analyze categorical 
variables. Therefore, based on the SMI median (17.76 g), the birds were divided in two groups (n = 65 
per group). Alternatively, we also grouped them based on the highest 10% (≥ 19.12 g) and lowest 10% 
(≤ 16.33 g) of the SMI (n = 13 per group).

Bird ringing and handling were carried out under license and guidelines of the Belgian Ringing Scheme 
and the Flemish authorities (Agentschap voor Natuur en Bos; ANB/BL-FF/V15-00034). All trapping 
and sampling protocols were approved and permitted by the Ethical Committee VIB (the Flanders 
Institute for Biotechnology) Ghent site (EC2015-023).

Chemicals and reagents
Ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) grade solvents, 
including methanol (MeOH) and acetonitrile, from Biosolve (Valkenswaard, the Netherlands) were 
used. Water was purified by a Milli-Q system (Millipore, Brussels, Belgium) and formic acid (FA) was 
obtained from Sigma-Aldrich (Saint Louis, MO, USA).

Liquid chromatography
Faecal samples were homogenized and lyophilized. Afterwards, 2 ml ice cold 80% MeOH was added to 
33.33 mg lyophilized sample. The volume of the solvent was adjusted to the available amount of sample. 
Then, 25 µl of 100 ng/µl internal standards (D-valine-D8, L-alanine-D3 and cortisol-D4) were added 
and each sample was vortexed and subsequently centrifuged at 17 000 g for 10 min. The supernatant 
was transferred to a liquid chromatography-mass spectrometry (LC-MS) vial. A quality control (QC) 
was prepared by pooling 100 µl of all individual samples. This pool was divided into 2 vials, which 
were used for column conditioning (external QC samples, EQC) and data normalization (internal QC 
samples, IQC). EQC samples were analyzed in duplicate preceding the batch run and IQC samples 
were analyzed in duplicate after each set of 10 samples, which were analyzed in a randomized 
order. UHPLC-Quadrupole-Orbitrap HRMS analysis was achieved on a Dionex UltiMate 3000 XRS 
UHPLC system (Thermo Fisher Scientific, San Jose, CA, USA). The compounds were separated on an 
Acquity® UPLC HSS T3 column (150 × 2.1 mm, 1.8 µm) (Waters, Manchester, UK) at 45°C, with a 
mobile phase flow rate of 400 µl/min. The phase consisted of (A) 0.1% FA in water and (B) 0.1% FA in 
acetonitrile. A gradient elution program was applied as follows: 0–1.5 min 98% A and 2% B, 1.5–7 min 
98% A and 2% B, 7–8 min 75% A and 25% B, 8–12 min 40% A and 60% B, 12–14 min 5% A and 95% 
B, 14–14.1 min 5% A and 95% B, 14.1–18 min 98% A and 2% B. The injection volume was 10 µl.

Mass spectrometry
A Q-ExactiveTM Orbitrap mass spectrometer (Thermo Fisher Scientific, San Jose, USA) equipped with 
heated electrospray ionization (HESI-II source), was used in polarity switching mode. Accurate mass 
spectra were acquired with an m/z scan range of 53.4–800 Da, at a mass resolution of 140 000 full width 
at half maximum at 1 Hz. Other instrumental parameters are presented in Table 1.
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Data analysis and statistics
In untargeted metabolomics, different steps are required for data acquisition and analysis, as 
described by (Van Meulebroek et al. 2015). The first step involves data preprocessing with SieveTM 
2.1 (Thermo Fisher Scientific, San Jose, USA). In this study, the data for each ionization mode (+ or -) 
were processed separately during peak list generation to achieve better model characteristics in 
SimcaTM 14. First, appropriate parameter settings were applied as follows: m/z: 53.4–800 dalton, 
retention time: 0.5–16 min; m/z width: 6 ppm; maximum peak width: 0.75 min, peak intensity 
threshold: 1 000 000 arbitrary units (AU), and maximum number of frames: 20 000. Afterwards, peak 
alignment was applied. In the final step, a number of discriminative parameters, used to retain only 
the most relevant ions, were set as follows: ratio (the average ion abundances between samples of 
different groups): < 0.66 or > 1.5 and P-value < 0.05. Data normalization was performed by dividing 
the peak intensity of a particular metabolite in a sample by the mean peak intensity of that metabolite 
in the following two internal QC samples (Vanden bussche et al. 2015).

The second phase in the general workflow involves predictive modelling of the retained ions to 
discover discriminating metabolites taking season (autumn 2016 vs spring 2017), age (first-year bird 
vs adult), sex (male vs female) and body condition (SMI) into account. For this, the normalized ion 
abundances were imported in SimcaTM 14, the data were log-transformed to induce normality and 
scaled by the Pareto method (dividing each variable by the square root of the standard deviation), 
which reduces the relative importance of larger values and partially preserves data structure (Van 
Den Berg et al. 2006). An unsupervised principal component analysis (PCA-X) model was created 
to look for potential outliers. In addition, an orthogonal partial least-square discriminant analysis 
(OPLS-DA) was used to evaluate potential discriminating metabolites between different sample 
groups (season, age, sex, and body condition (SMI)). The validation criteria were as follows: R2X > 0.5, 
R2Y > 0.5, Q2Y > 0.5, CV Anova p < 0.05 and a good permutation test (n = 100). An S-plot was created 
in the OPLS model to select the discriminating metabolites in significant models, using the following 
criteria: S-plot with cut-off values of p(corr) ≥ 0.5 and p ≥ -0.025 and p ≥ 0.02 for the positive ions and 
p(corr) ≥ 0.5 and p ≥ -0.03 and p ≥ 0.03 for the negative ions, Jack-knifed confidence intervals (not across 
0), and a variable importance in projection (VIP) scores >1.

Results
For both the positive and negative ionization a patterning was uncovered between the 19 samples from 
autumn 2016 and the samples from the same birds recaptured in spring 2017 (Fig. 1). In order to evaluate 
season as a discriminating factor for faecal metabolomic composition in great tits, OPLS-DA models 
were constructed (Fig. 2). The validity of the supervised OPLS-DA model was evaluated through R2(Y), 

TABLE 1

Instrumental parameters for Orbitrap mass spectrometry. 

Parameter Value Parameter Value
Sheath gas flow (AU) 50 HESI-II positions 0/B/1
Auxiliary gas flow (AU) 25 Max infection time (ms) 80
Sweep gas flow (AU) 5 S-lens RF level 50
Capillary temperature (°C) 250 Fragmentation Off
Heater temperature (°C) 350 AGC target 500000
Spray Voltage 3    
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Q2(Y), CV-ANOVA testing (Supplementary Table 2) and permutation tests (Supplementary Fig. 1). 
Taking season as a discriminating factor, values obtained for R2(X), R2(Y) and Q2(Y) were respectively 
0.569, 0.996 and 0.699 in the positive ionization mode, and respectively 0.543, 0.990, 0.800 in the 
negative ionization mode. Moreover, CV-ANOVA analysis (p ≤ 0.001) demonstrated that the obtained 
OPLS-DA models were highly significant. None of the other factors (age, sex and body condition) had 
an impact on great tit faecal metabolomic composition with R2(X) < 0.5, R2(Y) < 0.5, Q2(Y) < 0.5 or 
p > 0.05 (Supplementary Table 2).

After model building, S-plots were constructed that retain those metabolites that were specifically 
associated with great tit faecal samples in autumn 2016 or spring 2017 (Fig. 3). After removing cluster 
ions, 5 positively charged metabolites and 14 ions negatively charged were retained (Supplementary 
Table 3). These were screened against an in-house database comprising 300 metabolites, but no match 
was found.

Fig. 1 – Plots from multivariate statistical analysis. Score plots of the PCA-X model for the great tit 
faecal samples in (A) positive and (B) negative ionization mode. The green, red and yellow symbols 
represent the faecal samples in spring 2017, in autumn 2016 and internal quality control (IQC) 
samples, respectively.

Fig. 2 – OPLS-DA analysis. Score plots of a partial least-squares discriminant analysis model for a 
dataset containing great tit faecal samples collected in autumn 2016 (red) and in spring 2017 (green), in 
(A) positive and (B) negative ionization mode.
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Discussion
In humans it has been shown that the body mass index (BMI) is associated with the metabolome, 
making the metabolome profile a strong indicator of body health (Cirulli et al. 2019). When analyzing 
the faecal metabolome of great tits, no such association was observed as the SMI was not correlated 
with metabolomic composition. Thus, our data indicates that the metabolome of great tits is not linked 
to the overall body condition of these birds. However, when analyzing the interactions between the 
body condition and the metabolomic profile using SimcaTM 14, the SMI was evaluated as a categorical 
variable, possibly hiding an effect. Also, in this study we only analyzed great tits originating from the 
same forest plot, whereas environmental factors such as alterations in habitat and food sources have 
been shown to influence the avian microbiota composition (Teyssier et al. 2018b) and SMI (Rouffaer 
et al. 2017). In addition, in this study, we only sampled healthy birds that didn’t show any clinical signs. 
Possibly the lack of unhealthy individuals or death animals could have masked a link between the SMI 
and faecal metabolomic composition. As such it would be interesting to take a habitat effect into account 
by analyzing birds from different capture locations and/or including unhealthy or deceased animals.

Unlike SMI, seasonal changes were shown to affect the intestinal metabolomic composition of great tits. 
The influence of seasonal changes on metabolic rates in birds has been a topic of interest for decades 
(Miller 1939; Dawson 1958; Hart 1962), with temperature being one of the major modifiers of 
metabolic level in endothermic animals (Swanson 2010). The sampled great tits face changes in cold 
exposure and thermostatic costs and they are experiencing interacting effects of shorter days for foraging, 
longer nights of forced fasting and relatively low availability of food during autumn/winter periods 
(Swanson 2010). Besides, during the breeding season, changes in metabolomic composition related to 
the energetics of reproduction might also be expected (Golet & Irons 1999). All the seasonal changes 
could influence host physiology and, as a consequence, the faecal metabolomic profile. For example, 
the absence of free nutrients or physiological responses of a host to fasting may result in the selective 
development of resident microorganisms and cause complementary shifts in diversity and abundances 
of taxa, which could lead to changes in the faecal metabolomics profiles (Kohl et al. 2014). Another 
possibility for seasonal changes in faecal metabolites could be the altered diet of the birds. During their 
breeding and post-breeding, great tits preferably forage on invertebrates in all developmental phases 
(including Lepidoptera, Araneidae, Hemiptera, Diptera, Hymenoptera, Coleoptera) (Rytkönen et al. 
2018). In times when the invertebrate food supply is limited (autumn/winter), the major component of 
the diet includes plant material such as buds and seeds of beech, hazel and oak, but also seeds provided at 
bird tables (Vel’ký et al. 2011). As food source and food quality have been shown to pose a differential 

Fig. 3 – S-plots. S-plots for faecal samples of great tits in (A) positive and (B) negative ionization 
mode, wherein each dot represents a metabolite.
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selection pressure on the gut microbiome of wild birds (Grond et al. 2018), it is also possible that the 
changes in metabolomic composition are linked to seasonal alterations in diet composition.

In this study, we analyzed faecal samples instead of cloacal swabs. This was done for two reasons, namely 
(1) due to the noninvasive nature of the sample collection and (2) because faeces is a more representative 
matrix in comparison to cloacal swabs. Faeces typifies the unique link with the gastrointestinal 
functionality, encompassing gut integrity and digestive and absorptive processes (Gregory et al. 2013). 
It strongly reflects dietary intake and shows the interactions between a host and the gut microbiome 
and has been put forward as the essential biological matrix for in-depth metabolomic and microbiome 
studies (Vanden Bussche et al. 2015; Van Meulebroek et al. 2017; Videvall et al. 2017).

Screening of the metabolites specifically linked to season against an in-house database did not result in 
identification of these metabolites and because of the limited faecal mass per sample we were restricted 
in further identification attempts using MS/MS analysis (Schrimpe-Rutledge et al. 2016). Intestinal 
metabolites mainly originate from gut microbiota and the host itself. Host metabolites include for 
example free fatty acids, amino acids and vitamins, but metabolites derived from gut microbiota are 
also essential for intestinal homeostasis including for example bacteriocins, short-chain fatty acids and 
quorum-sensing autoinducers (Li et al. 2018). With the host microbiome playing an important role in 
maintaining host physiology and the metabolome largely reflecting the gut microbial composition (70%) 
(Zierer et al. 2018; Visconti et al. 2019), these processes are inextricably linked. At this point, without 
identification of the discriminating metabolites it is however not possible to state whether the metabolites 
are host- or microbially-derived. Yet, with the gained knowledge, this study could for example serve 
as a reference study for future research using a multi-omics approach investigating the relationship 
between environment, the microbiome and the circulating host- and microbially-derived metabolome. 
Our results for example might open new perspectives to identify global relationships between specific 
dietary compounds, the circulating metabolites, how this is shaped by changes in the gut microbiome 
and what the consequences are on health status and future health risk.

Summarized, we provided a study that for the first time analyzes the relation between environmental 
factors, life-history traits and body condition of wild great tits with the faecal metabolome. We 
hypothesized that the avian faecal metabolomic composition could be used as a proxy for host health, but 
no such interactions were found. However, as all birds originated from the same location, a correlation 
may be masked. Furthermore, all birds were clinically healthy and therefore, might show no impact on 
body condition yet. Instead, season was identified as a discriminating factor for the great tit metabolome. 
As such, our data highlight the influence of environmental factors on the host metabolome.
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SUPPLEMENTARY TABLE 1

Sample characteristics: per bird ID the sex (male (♂) / female (♀)), age (first-year bird/adult), SMI and 
season of faecal sampling (autumn 2016/spring 2017) are given. 

Bird ID Sex Age SMI autumn 2016 SMI spring 2017 Season of sampling

58V92657 ♂ Adult 17.37   autumn 2016
58V92955 ♂ Adult 17.31   autumn 2016

59V39008 ♀ Adult 17.13 16.99 autumn 2016
spring 2017

59V39009 ♂ Adult 17.15   autumn 2016
59V39011 ♀ Adult 18.43   autumn 2016

59V39056 ♀ First-year 18.57 18.12 autumn 2016
spring 2017

59V39115 ♂ Adult 18.97   autumn 2016
59V39118 ♂ Adult 18.38   autumn 2016
59V39121 ♂ Adult 17.29   autumn 2016
59V39143 ♀ Adult 18.31   autumn 2016

59V39151 ♂ Adult 16.65 15.97 autumn 2016
spring 2017

59V39156 ♀ Adult 15.84 15.45 autumn 2016
spring 2017

59V39177 ♀ Adult 20.14   autumn 2016
59V39184 ♀ Adult 18.83   autumn 2016
59V39185 ♀ Adult 18.26   autumn 2016

59V39187 ♂ Adult 17.17 15.79 autumn 2016
spring 2017

59V39198 ♂ Adult 17.89   autumn 2016
59V39201 ♂ Adult 18.02   autumn 2016
59V39202 ♀ Adult 17.15   autumn 2016

59V39203 ♀ Adult 18.06 17.58 autumn 2016
spring 2017

59V39204 ♂ Adult 17.12   autumn 2016
59V39211 ♂ Adult 16.08   autumn 2016
59V39227 ♂ First-year 18.35   autumn 2016

59V39232 ♂ First-year 18.35 16.98 autumn 2016
spring 2017

59V39241 ♀ First-year 19.34   autumn 2016
59V39243 ♀ First-year 17.70   autumn 2016
59V39260 ♂ First-year 16.87   autumn 2016
59V39298 ♂ First-year 16.45   autumn 2016
59V39408 ♀ First-year 18.75   autumn 2016
59V39409 ♀ First-year 18.80   autumn 2016
59V39439 ♀ First-year 19.58   autumn 2016
59V39446 ♀ First-year 16.77   autumn 2016
59V39480 ♂ Adult 17.82   autumn 2016

59V39483 ♂ First-year 18.21 17.55 autumn 2016
spring 2017

59V39484 ♂ First-year 16.96   autumn 2016
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Bird ID Sex Age SMI autumn 2016 SMI spring 2017 Season of sampling

59V39485 ♂ Adult 18.20 18.05 autumn 2016
spring 2017

59V39527 ♂ First-year 16.44 16.29 autumn 2016
spring 2017

59V39529 ♀ First-year 17.50   autumn 2016
59V39535 ♀ First-year 17.34   autumn 2016
59V39575 ♂ First-year 16.46   autumn 2016
59V39580 ♂ First-year 17.27   autumn 2016

59V39586 ♀ First-year 20.12 18.01 autumn 2016
spring 2017

59V39587 ♂ First-year 18.85   autumn 2016
59V39596 ♂ First-year 16.81   autumn 2016
59V39745 ♀ First-year 17.03   autumn 2016
59V39746 ♂ Adult 21.44   autumn 2016
59V39747 ♂ Adult 18.90   autumn 2016
59V39748 ♂ First-year 17.51   autumn 2016
59V39749 ♀ First-year 16.22   autumn 2016
59V39750 ♀ First-year 17.81   autumn 2016
59V39751 ♀ First-year 17.85   autumn 2016
59V39752 ♀ First-year 19.35   autumn 2016
59V39756 ♀ First-year ND   autumn 2016
59V39757 ♀ First-year 18.03   autumn 2016

59V39758 ♀ First-year 17.63 17.58 autumn 2016
spring 2017

59V39759 ♂ First-year 17.36   autumn 2016
59V39760 ♂ First-year 17.65   autumn 2016
59V39761 ♀ First-year 17.13   autumn 2016
59V39762 ♀ First-year 18.18   autumn 2016

59V39763 ♀ Adult 16.58 17.59 autumn 2016
spring 2017

59V39764 ♂ First-year 16.99 16.18 autumn 2016
spring 2017

59V39765 ♀ First-year 17.62   autumn 2016

59V39766 ♀ First-year 19.93 19.33 autumn 2016
spring 2017

59V39767 ♂ First-year 18.67   autumn 2016
59V39768 ♀ First-year 19.66   autumn 2016
59V39771 ♂ First-year 18.38   autumn 2016
59V39773 ♀ First-year 17.46   autumn 2016
59V39774 ♀ First-year 17.66   autumn 2016

59V39776 ♂ First-year 19.20 18.20 autumn 2016
spring 2017

59V39777 ♀ First-year 18.67   autumn 2016
59V39778 ♀ First-year 18.42   autumn 2016
59V39779 ♂ First-year 18.97   autumn 2016
59V39781 ♂ First-year 17.91   autumn 2016
59V39782 ♂ First-year 18.16   autumn 2016
59V39831 ♂ First-year 19.12   autumn 2016
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Bird ID Sex Age SMI autumn 2016 SMI spring 2017 Season of sampling

59V39833 ♀ First-year 17.75   autumn 2016
59V39834 ♀ First-year 17.98   autumn 2016
59V39835 ♂ First-year 18.09   autumn 2016
59V39836 ♀ First-year 15.70   autumn 2016
59V39837 ♀ First-year 16.25   autumn 2016
59V39838 ♀ First-year 17.18   autumn 2016
59V39839 ♀ First-year 17.49   autumn 2016
59V39841 ♀ First-year 18.02   autumn 2016
59V39842 ♀ First-year 18.63   autumn 2016
59V39844 ♂ Adult 17.30   autumn 2016

59V39845 ♂ First-year 17.99 16.45 autumn 2016
spring 2017

59V39847 ♂ First-year 16.49   autumn 2016
59V39849 ♂ Adult 20.84   autumn 2016
59V39850 ♂ First-year 18.03   autumn 2016
59V39851 ♂ First-year 18.25   autumn 2016
59V39852 ♂ Adult 16.33   autumn 2016
59V39853 ♀ First-year 18.15   autumn 2016
59V39854 ♀ Adult 16.72   autumn 2016
59V39855 ♀ First-year 17.77   autumn 2016
59V39856 ♂ Adult 17.50   autumn 2016
59V39857 ♂ Adult 17.33   autumn 2016
59V39858 ♂ First-year 18.02   autumn 2016

59V39860 ♂ First-year 17.87 17.86 autumn 2016
spring 2017

59V39861 ♀ First-year 18.46   autumn 2016
59V39862 ♂ First-year 17.67   autumn 2016
59V39863 ♂ First-year 18.66   autumn 2016
59V39864 ♀ First-year 16.64   autumn 2016
59V39865 ♀ First-year 17.04   autumn 2016
59V39867 ♂ First-year 16.49   autumn 2016

59V39868 ♀ First-year 18.99 18.25 autumn 2016
spring 2017

59V39871 ♀ First-year 16.32   autumn 2016
59V39947 ♂ First-year 19.74   autumn 2016
59V39951 ♂ First-year 18.90   autumn 2016
59V39997 ♀ First-year 17.80   autumn 2016
59V39998 ♂ Adult 17.30   autumn 2016
59V39999 ♂ First-year 15.25   autumn 2016
59V92482 ♂ Adult 17.55   autumn 2016
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SUPPLEMENTARY TABLE 3

Selected metabolites with m/z and retention time.

  Metabolite ID m/z Time(min) Mostly present

+ ions

787 116.0966 5.54 Spring 2017
7686 266.1384 6.40 Spring 2017
8399 277.2005 7.97 Spring 2017
10281 305.2317 9.24 Autumn 2016
11226 321.2267 8.17 Autumn 2016

- ions

1431 289.0329 1.03 Spring 2017
1886 211.0274 6.34 Spring 2017
1977 216.0182 6.00 Spring 2017
2187 223.0259 6.39 Spring 2017
3159 515.1187 8.90 Spring 2017
6854 368.1065 7.68 Spring 2017
8085 409.2076 6.93 Spring 2017
8627 434.0474 6.15 Spring 2017
8761 437.2388 7.98 Autumn 2016
8922 447.0598 6.36 Spring 2017
9279 465.2701 9.25 Autumn 2016
9477 473.2156 8.42 Autumn 2016
9666 481.2651 7.62 Autumn 2016
11938 785.2292 9.21 Spring 2017

Supplementary Fig. 1 – Permutation plots. Permutation plots as a validation criterion for an orthogonal 
partial least-squares discriminant analysis model for a dataset containing the faecal samples in (A) 
positive and (B) negative ionization mode (n = 100).


