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Abstract. Among the fauna inhabiting the Posidonia oceanica seagrass meadow, holothurians are par-
ticularly abundant and provide essential ecological roles, including organic matter recycling within se-
agrass sediments. This study aimed to investigate the trophic niche of four holothurians of  the order 
Holothuriida [Holothuria poli (Delle Chiaje, 1824), Holothuria tubulosa (Gmelin, 1791), Holothuria 
sanctori (Delle Chiaje, 1823) and Holothuria forskali (Delle Chiaje, 1823)] inhabiting P. oceanica me-
adows, through the measurement of nitrogen and carbon stable isotope ratios. Two shallow and con-
trasting sites of the littoral region of Mostaganem (North West Algeria) were chosen. The first site, 
located in Stidia, is weakly impacted by human activities. The second site, located in Salamandre, is 
highly impacted by human activities (industries, harbor facilities). High values of δ15N in holothurians 
and their food sources were observed at both sites. The δ13C values showed a lower contribution from 
detritic Posidonia than in other areas. This could be a consequence of P. oceanica bed degradation in the 
studied area. The stable isotope approach did not reveal dietary differences between species, and the four 
holothurians species exhibited significant isotopic niche overlap. However, niche sizes differed between 
species showing more variable individual trophic diversity in some species (H. tubulosa and H. sanc-
tori in Salamandre; H. forskali in Stidia). If niche segregation does occur, it is not in terms of general 
resource use. More likely, it would be the abundance of food sources, the different life habits and their 
micro-habitats that may explain their co-existence in the P. oceanica seagrass meadow.
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Introduction

The Posidonia oceanica (L.) Delile 1813 seagrass meadow is considered as a pivotal ecosystem of 
Mediterranean coastal waters (Boudouresque et al. 2006; Gobert et al. 2006) and as a powerful 
integrator of the overall marine water quality (Richir et al. 2015). The P. oceanica ecosystem has 
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significant primary production that is only partially consumed by herbivorous organisms (Vizzini 
2009). The remaining primary production (seagrass litter, composed mainly of P. oceanica dead leaves), 
represents an important source of organic matter for benthic detritivore communities (Walker et al. 
2001; Remy et al. 2018). Thus, dead leaves are part of the diet of a great number of species, such as 
echinoderms (echinoids and holothuroids), copepods, isopods, amphipods, decapods and polychaetes 
(Vizzini 2009; Mascart et al. 2018; Remy et al. 2018). This detrital biomass is also exported from 
the P. oceanica meadow to adjacent areas where it contributes to local food webs (Vizzini 2009; Remy 
et al. 2018). 

Holothuroid echinoderms,  commonly known as sea cucumbers, especially of the order Holothuriida 
(formerly Aspidochirotida partim)  are  major representatives of the benthic compartment of  P. 
oceanica ecosystem (Mezali 2008). They are detritus-feeders, participating in the transfer of organic 
matter produced by the seagrass, contributing to the recycling of organic matter and its re-mineralization 
and generating an important “turn over”, thus playing a key role in the oxygenation of the soft substrate 
(Amaro et al. 2010; Mactavish et al. 2012; Costa et al. 2014). Several holothurian species are present 
in the P. oceanica meadows. The most common are Holothuria poli (Delle Chiaje, 1824), Holothuria 
tubulosa (Gmelin, 1791), Holothuria sanctori (Delle Chiaje, 1823) and Holothuria forskali (Delle 
Chiaje, 1823). Holothuria tubulosa and H. poli are found at the “intermatte” (spaces without P. oceanica 
leaves within the meadow), whereas, H. sanctori and H. forskali frequent much more commonly the 
eroded vertical edge (thickness of the “matte” that is observed at the level of inter-mattes) (Mezali 
2004). Other studies indicate that H. poli frequents sparse meadows, while H. tubulosa frequents dense 
ones (Francour 1990).

Sea cucumbers are an economically important fisheries resource and constitute an interesting food and 
medicinal market in Asian and some European countries (Sicuro et al. 2012; Purcell et al. 2013). 
Despite their ecological importance, data on the diet of aspidochirotid holothurians remain scarce 
(Mezali et al. 2003). Studies on feeding behavior were conducted by several authors worldwide 
(Sonnenholzner 2003; Amaro et al. 2010) and in the Mediterranean (Coulon & Jangoux 1993; 
İşgören-Emiroğlu & Günay 2007). According to Belbachir et al. (2014), H. poli tends to select the 
finest sedimentary particles; while other species show selectivity for organic matter (Mezali et al. 2003; 
Mezali & Soualili 2013). 

Several food components of various origins (plant and animal) have been found in the digestive tract of 
holothurians inhabiting P. oceanica meadows (Belbachir & Mezali 2018).

Food-niche studies aim to identify the alimentary resources exploited by individuals or populations. 
Several techniques are used to study the selection of food resources and trophic relationships between 
species. Traditional techniques rely on direct observations of feeding behavior (Caraveo-Patino & Soto 
2005), or on indirect methods such as the analysis of stomach or fecal contents (Smith & Whitehead 
2000; Jarman et al. 2002). However, these methods are difficult to apply to deposit-feeding organisms 
such as holothurians. Moreover, these approaches do not inform us about the nature of the assimilated 
material. A biochemical marker, such as carbon and nitrogen stable isotope ratios, provides an indirect 
method for identifying animal dietary components. The advantage of these biochemical markers is the 
integration of animal diet information over a longer time (Dalerum & Angerbjorn 2005). Moreover, 
isotopic compositions of various species can be compared to establish the relative extent of the trophic 
niches (Jackson et al. 2011) or the extent to which they overlap. Isotopic variability may also reveal 
fluctuations of the inter-individual diet of animals (Bearhop et al. 2004). This approach has recently 
been applied in invertebrate communities colonizing the P. oceanica litter exported outside of the 
seagrass meadows (Mascart et al. 2018; Remy et al. 2018).

Marine coastal ecosystems are sensitive to disturbances associated with human activities. Wastewater 
from urban areas and organic and inorganic fertilizers from agricultural areas may have significant side 
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effects on benthic invertebrates, inducing changes in food resource availability, leading to a change in 
food web functioning (Cooper et al. 2007).
The aims of our study were to characterize the isotopic niches of holothurian species and to test for 
niche overlaps between four sympatric species inhabiting P. oceanica meadows. We tested these study 
aims at two sites Stidia and Salamandre, which differ in their levels of anthropogenic disturbance in 
term of farmland fertilizers and urban wastewater, respectively. These different levels of anthropogenic 
disturbance could potentially influence the feeding behavior of holothurians and affect their trophic 
niches.

Material and methods

Sampling

The sampling was carried out during autumn 2016 in the littoral region of Mostaganem (North West 
Algeria). We chose this period of the year because P. oceanica leaf detritus resulting from natural 
leaf fall accumulates as  litter after autumn storms (Gobert et al. 2006). Two shallow water stations 
were selected (3 m average water depth and 15 km distant from one another) (Fig. 1). The first site is 
located at Stidia (35°49′ N; 0°01′ W) in a poorly urbanized and industrialized area (Fig. 1). However, 
it is very close to farmland, leaving it exposed to some sources of organic pollution (fertilizers rich 
in phosphorus and nitrogen) (Belbachir 2012). At this site, P. oceanica seagrass develops on rocky 
substratum from 1.5 m depth. This meadow is of type II according to the classification of Giraud (1977) 
and is in front of small patches of Cymodocea nodosa meadows (Belbachir 2012). The second site 
located at Salamandre (35°54′ N; 0°03′ E) (Fig. 1), is adjacent to the fishing harbor of Mostaganem. This 
site is characterized by a large residential area and the presence of several factories [milk production 
(Orolait), pasta products (Safina) and cosmetic products]. The infralittoral area of Salamandre shows 
signs of degradation, namely a reduced biodiversity (Benzait 2015) and P. oceanica meadow in very 
bad condition (i.e., reduced shoot density, increased patchiness). 

This meadow is sparse and develops on a rocky substratum (Belbachir 2012). This situation is likely 
a direct consequence of the construction of the fishing harbor over the last 10 years altering the water 
flow and directly affecting the health of the P. oceanica meadow. In these two sites, we find, in order 
of abundance, four aspidochirotid holothurians species: Holothuria poli, which frequents the detrital 
bottoms and P. oceanica meadows (Mezali 2004); Holothuria tubulosa found much closer to the rocky 

Fig. 1 – Geographical location of the two sampling sites (stars): Stidia and Salamandre (from Soualili 
et al. 2008, modified).
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substratum and within P. oceanica meadows (Francour 1990); and two other species (H. sanctori and 
H. forskali), which are cryptic species found on the hard substratum, under rocks and between rhizomes 
of P. oceanica (Mezali 2004).

Ten individuals of each holothurian species (20 cm mean size) were collected from each study site 
(n = 80) at 3 m mean depth. Their potential food sources were also sampled from the biotope where 
they lived. The three considered food sources were: P. oceanica dead leaves (PM) (sampled from the 
litter); meiofauna (Me) (i.e.,: fauna passing through a 1mm mesh sieve and retained on 38μm mesh 
sieve) and the epiphytes of the P. oceanica leaves (Ep). The latter were obtained after carefully scraping 
the P. oceanica leaves using a razor blade (Dauby & Poulicek 1995). The epiphytes contribute to 
the enrichment of the organic matter contained in the sediment and are likely to be assimilated by 
holothurians.

Stable isotope analysis

The retractor muscles of each individual were carefully removed and then dried separately for 48h at 
50°C. Afterwards, they were ground, with mortar and pestle to a very fine powder. Each of the three 
food sources was ground separately in a ball mill (Retsch Mixer Mill MM301), to obtain a very fine 
and homogeneous powder. In order to eliminate the carbonates (HCO3

2-) potentially contained in 
the retractor muscles, the latter were exposed to 37% hydrochloric acid (HCl) fumes for 24h. The P. 
oceanica epiphyte (Ep) samples were also decalcified directly in 1N HCl for 24h. The isotopic ratios of 
C and N were measured on a mass spectrometer (EA-IRMS) (Isoprime 100, Isoprime, UK) coupled to 
a N-C-S elemental analyzer (Vario Microcube, Elementar, Germany at the Laboratory of Oceanology, 
University of Liège, Belgium). Stable isotope ratios were expressed using the notation δ (‰) (Coplen 
2011). Certified materials were IAEA-N2 (ammonium sulphate) (δ15N = +20.30 ± 0.20 ‰); IAEA C6 
(sucrose) (δ13C = -10.80 ± 0.47 ‰) and glycine (δ15N = 2.25 ± 0.3 ‰, δ13C = -47.5 ± 0.3 ‰). Standard 
deviations on the composition measurements replicated on a sample were 0.3 ‰ for δ13C and 0.4 ‰ for 
δ15N, respectively.

Statistical analysis

A non-parametric Kruskal-Wallis test was performed to test for a possible difference in C and N isotopic 
ratios between the studied holothurian species, as well as between the three food sources. The differences 
in C and N isotopic ratio for the holothurians and food sources between the two sites were also examined 
with a non-parametric Kruskal-Wallis test. In case of significant difference, the Kruskal-Wallis test 
was followed by the Dunn’s posterior test (with Bonferonni’s adjustment method for the P value). The 
test results were considered significant, when P < 0.05. The statistical analyses were performed using 
the R v3.4.1 software (R Core Team 2017). The different parameters of the isotopic niche (trophic 
niche proxy established by stable isotopes) were calculated using the SIBER package (Stable Isotope 
Bayesian Ellipses in R, Version 4.2, Jackson et al. 2011). The SIBER package was used to generate 
the bivariate standard ellipses that represent the holothurians’ isotopic niches. Calculation of niche area 
and overlap between the ellipses was performed using Bayesian SEAc inference (Jackson et al. 2011). 
Comparison between areas of the ellipses associated to each holothuroid was also performed using 
Bayesian modeling (SEAb).

Results

Isotopic composition

The δ15N value of potential food sources used by the holothurians of the Stidia site showed a significant 
difference (Kruskal-Wallis test, P = 0.006). The δ15N of the P. oceanica epiphytes differed from that of 
the P. oceanica dead leaves (Dunn’s test, P = 0.002); whereas the δ15N of P. oceanica dead leaves and 
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meiofauna showed no difference (Dunn’s test, P = 0.2) (Fig. 2). The δ13C value of food sources showed 
a significant difference (Kruskal-Wallis test, P = 0.005). The P. oceanica epiphytes showed a δ13C value 
significantly different from that of the dead P. oceanica leaves (Dunn’s test, P = 0.002) (Fig. 2). The 
nitrogen isotopic composition varied between the holothurian species in the Stidia site (Fig. 2) with 
values ranging between 13.2 ‰ and 16.8 ‰ (15.1 ± 1.1 ‰); 12.9 ‰ and 15.2 ‰ (14.3 ± 0.9 ‰); 12 ‰ 
and 15.6 ‰ (14 ± 1.1 ‰) and between 12.5 ‰ and 15 ‰ (13.7 ± 0.7 ‰) respectively in H. sanctori, 
H. poli, H. forskali and H. tubulosa. The values obtained for H. sanctori were significantly different 
from those of H. tubulosa (Kruskal-Wallis test, P = 0.05; Dunn test, P = 0.02). The values of d13C varied 
between -17 ‰ and -15.7 ‰ (-16.3 ± 0.3 ‰); -17.2 ‰ and -15 ‰ (-16.5 ± 0.6 ‰); -17.1 ‰ and -16.1 ‰ 
(-16.8 ± 0.3 ‰), and between -17.3 ‰ and -16.2 ‰ (-16.9 ± 0.3 ‰) respectively for H.  tubulosa, 
H. forskali, H. sanctori and H. poli. There were significant differences between H. tubulosa and H. poli 
(Kruskal-Wallis test, P = 0.04; Dunn’s test, P = 0.01).

The δ15N values of potential food sources consumed by holothurians of the Salamandre site showed a 
significant difference (Kruskal-Wallis test, P = 0.008). The δ15N value of P. oceanica epiphytes differed 
from that of the dead P. oceanica leaves (Dunn’s test, P = 0.007) and differed from that of the meiofauna 
(Dunn’s test, P = 0.02) (Fig. 2). The δ13C values of the three food sources showed a significant difference 
(Kruskal-Wallis test, P = 0.001). Posidonia oceanica epiphytes had a δ13C value that was significantly 
different from those of dead P. oceanica leaves (Dunn’s test, P = 0.0006) (Fig. 2). Low variation of 
nitrogen isotopic composition was observed between holothurians species of the Salamandre site 
(Fig. 2), the values ranging between 11.4 ‰ and 13.8 ‰ (mean ± standard deviation, 12.5 ± 0.6 ‰); 
12 ‰ and 15 ‰ (13.6 ± 0.9 ‰); 10.7 ‰ and 13.6 ‰ (12.1 ± 0.9 ‰) and 12 ‰ and 13.7 ‰ (12.9 ± 0.6 ‰) 
respectively for H. poli, H. forskali, H. sanctori and H. tubulosa. There was a significant difference 
between the δ15N values of holothurians. Holothuria forskali was significantly different from H. sanctori 
(Kruskal-Wallis test, P = 0.01; Dunn’s test, P = 0.003). The δ13C values obtained for holothurians ranged 
between -18.1 ‰ and -16.1 ‰ (-17.2 ± 0.5 ‰); -18.3 ‰ and -16.8 ‰ (-17.5 ± 0.5 ‰); -18.3 ‰ and 
-16.3 ‰ (-17.7 ± 0.7 ‰), and between -19.2 ‰ and -15.7 ‰ (-17.7 ± 0.9 ‰) respectively for H. poli, 

Fig. 2 – Carbon isotope ratio (δ13C in ‰) and nitrogen isotope ratio (δ15N in ‰) of the four studied 
holothuroids (individual measurements) and their food sources (mean values ± standard deviation) at 
Stidia (open symbols) and Salamandre (black symbols) sites, respectively.
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H. forskali, H. sanctori and H. tubulosa. Carbon isotopic composition showed no difference between the 
studied holothurian species (Kruskal-Wallis test, P = 0.1) (Fig. 2). The δ15N and δ13C values of the food 
sources showed no difference between the two studied sites (Kruskal-Wallis test, P = 0.1). However, the 
δ15N and δ13C values of holothurians showed a difference between the two studied sites (Kruskal-Wallis 
test, P = 0.05), the holothurians of the Stidia site being more enriched in 15N and 13C. 

Isotopic niche characteristics

At the site of Stidia, H. forskali occupied the largest isotopic niche (SEAC: 2.56 ‰2), followed by 
H. sanctori, H. poli and H. tubulosa (with SEAC: 1.11 ‰2, 1.05 ‰2 and 0.73 ‰2 respectively) (Fig. 3A). 
A strong overlap between isotopic niches was observed between all holothurian species (Fig. 3A). The 
most important overlap was that between H. poli and H. forskali (6.18 ‰2, i.e., 6.34% of H. poli SEAC 
and 15.33% of H. forskali SEAC); while the least important overlap was observed between H. poli and 
H. tubulosa (2.59 ‰2, i.e., 6.34 % of H. poli SEAC and 4.40 % of H. tubulosa SEAC) (Fig. 3A). 

Through Pairwise comparisons of model estimated ellipse areas (SEAb), we found that the H. poli 
isotopic niche width was smaller than that of H. forskali in 98% of the model estimates (Fig. 3B). The 
standard ellipse area (SEAb) of the other holothurian species taken in pairs was not significantly different 
as the probability differences were less than 95%.

In Salamandre, H. tubulosa occupied the largest isotopic niche (SEAC: 2.03 ‰2), followed by H. sanctori, 
H. forskali and H. poli (with SEAC: 1.86 ‰2, 1.66 ‰2 and 0.98 ‰2 respectively) (Fig. 4A). The largest 
isotopic niche overlap was between H. sanctori and H. tubulosa (7.57 ‰2, i.e., 11.15 % of H. sanctori 
SEAC and 12.15 % of H. tubulosa SEAC); while the least significant overlap, was observed between 
H. poli and H. forskali (3.81 ‰2, i.e., 5.92 % of H. poli SEAc and 9.95 % of H. forskali SEAc) (Fig. 4A). 
Through the pairwise comparison of model estimated ellipse areas (SEAb), we found that the standard 
ellipses area (SEAb) of holothurians species taken in pairs did not show any significant difference 
(Fig. 4B).

Fig. 3 – Isotopic niches of the four holothuroids of the Stidia site. The lines represent the bivariate 
standard ellipses associated with each sea cucumber species (H. tubulosa, H. poli, H. forskali, H. sanctori 
in blue, black, red and green line respectively). Boxplots of the bivariate ellipses standard estimation 
model (SEAb); dark gray, medium and light boxes are respectively 50 %, 75 % and 95 % credibility 
intervals of the probability of density function distributions of the model solutions, and white dots are 
the modes of these distributions at Stidia.
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Discussion

The potential trophic sources used by the holothurians of the two studied sites were more enriched in δ15N 
compared to other Mediterranean sites (Lepoint et al. 2000). The site of Stidia is edging an agricultural 
zone; nitrification and denitrification following the application of fertilizers on these farmlands could 
increase the δ15N, which could be transported to the marine environment (Finlay & Kendall 2007) 
and influence the δ15N of primary producers (Cole et al. 2005). The classification of Pergent et al. 
(1995), which incorporates the depth factor in the estimation of the state of the P. oceanica meadows, 
indicates that the vitality of the P. oceanica meadow of Stidia site is abnormal (Belbachir 2012). The 
wastewaters and sewage spills at the Salamandre site may also have an impact on the δ15N of the primary 
producers (Vermeulen et al. 2011) including P. oceanica (Lassauque et al. 2010). Therefore, our 
results indicate that both sites are influenced by human activities, even though the Stidia site remains 
relatively better preserved than the Salamandre site. 

The studied holothurians species showed higher δ15N and δ13C values than those obtained by Lepoint 
et al. (2000), in H. tubulosa from Calvi Bay (Corsica) [(5.5 ± 1.0 ‰) for δ15N; (-13.2 ± 1.7 ‰) for δ13C]. 
The δ15N values obtained for the studied holothurians in the present work are also higher than those 
obtained by Ricart et al. (2015) for H. tubulosa from Catalan coasts (Spain); whereas the δ13C values 
obtained by these authors [(9.17 ± 0.43 ‰) for δ15N; (-16.41 ± 0.32 ‰) for δ13C] are very close to our 
results. 

The δ15N values in holothurians of Stidia site were higher than those of the Salamandre site; this may 
suggest that the sources used at Stidia belong to higher trophic levels. However, in our case, it is 
estimated that anthropogenic inputs would have influenced the isotopic baseline. Indeed, the nitrogen 
isotope composition of primary producers reflects those of external sources (Fry 2006), including 
anthropogenic inputs (Lassauque et al. 2010; Vermeulen et al. 2011). 

Dead leaves are an important source of organic matter for seagrass detritivore communities (Walker 
et al. 2001), including holothurian species in P. oceanica beds (Lepoint et al. 2000, Costa et al. 2014), 

Fig. 4 – Isotopic niches of the four holothuroids of the Salamander site. The lines represent the bivariate 
standard ellipses associated with each sea cucumber species (H. tubulosa, H. poli, H. forskali, H. sanctori 
in blue, black, red and green line respectively). Boxplots of the bivariate ellipses standard estimation 
model (SEAb); dark gray, medium and light boxes are respectively 50 %, 75 % and 95 % credibility 
intervals of the probability of density function distributions of the model solutions, and white dots are 
the modes of these distributions at Salamander.
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but paradoxically, our δ13C data could indicate that this source is less consumed in our area than in the 
Calvi bay, for example (Lepoint et al. 2000). This result could be explained in two ways: 1) the sampled 
meadows in our study are unique since they develop on rocky substratum, whereas, for example, the 
meadows sampled by Lepoint et al. (2000) develop on sandy substrate. This is likely to affect the 
amount of sediment and the P. oceanica organic matter available for holothurians. Alternatively, at least 
one of the meadows (especially that of Salamandre) is much degraded and the P. oceanica contribution 
to the sedimentary material is probably small; 2) the tissues used in our study (i.e., retractor muscles) 
are different from the tissues commonly used (i.e., integument), however our choice seems appropriate 
insofar as muscle tissues do not contain carbonate unlike the integument, which is generally difficult 
to decalcify and grind. This difference in tissues implies a difference in biochemical composition but 
also in renewal time (Tieszen et al. 1983; Ogden et al. 2004). Our results show that in the few months 
preceding the sampling, the contribution of P. oceanica to the holothurians’ diet seemed limited. 

Sampled Holothurians seemed to rely mostly on food sources with lower δ13C, namely of algal origin 
(i.e., epiphytes, phytoplankton).

At the two sites of Mostaganem region, the studied holothurian species had a high isotopic niche overlap, 
which suggests that these benthic invertebrates used the same food sources and therefore exhibited 
similar trophic niches. The similarity of trophic niches between species raises two very important 
issues: the sharing of the resource and competitive interactions (Dromard 2013). Analysis of the gut 
contents of the same four studied holothurian species confirmed that the ingested diet of these animals 
is based on the same trophic resources (Belbachir & Mezali 2018). This finding leads us to say that 
the coexistence of these holothurians cannot be explained by food resources partition, but rather by a 
better partition of their habitat (spatial and behavioral segregation). Indeed, H. poli and H. tubulosa 
mainly prefer detrital and rocky beds, near P. oceanica meadows, while H. forskali and H. sanctori 
are located under the boulders and can even be found on rocky bottoms rich in plant species, close to 
P. oceanica meadows (Francour 1990; Mezali 2004). The micro-distribution of the species studied 
during the present work was different from that observed by Mezali (2004) on the same holothurian 
species in Sidi Fredj site (central region of Algeria). This author found that H. tubulosa and H. poli 
preferred P. oceanica “intermattes”, whereas H. forskali and H. sanctori were situated at the level of 
the eroded vertical edge and between P. oceanica rhizomes. It is possible that this difference in the 
micro-distributions of holothurians is due to the nature of P. oceanica meadows. Indeed, the meadows 
of Stidia and Salamandre are installed on rocky substratum, while the meadow of Sidi Fredj is installed 
on Posidonia “matte”. This indicates that the micro-niche of these species could be, to some extent, 
variable and plastic according to local environmental conditions. 

The high overlap could also be explained by the abundance of the food resources, which excludes 
competition between holothurian species and thus allows for coexistence. The difference in the relative 
contribution of each food resource to the diet of the studied species, or the timing difference in their 
supply, could also explain their coexistence. Holothuria forskali of the Stidia site occupied the largest 
isotopic niche, which is probably due to its use of a wide range of trophic sources compared to other 
species. The difference between the habitats frequented by these holothurian species could also be at 
the origin of the difference between the dimensions of their isotopic niches (especially between H. 
poli and H. sanctori). Holothurian species of Stidia displayed higher δ15N variability than those of 
Salamandre, suggesting that they may eat across a broader range of trophic level, mainly from animal 
sources. However, holothurians in Salamandre were more variable according to their δ13C (especially H. 
tubulosa), which could indicate that holothurians rely on multiple and diverse basal food sources, thus 
it leads us to suppose that they have a higher trophic plasticity and a generalist character. It is important 
to note that Salamandre is a highly impacted site with a much-degraded and very sparse Posidonia 
meadow. The organic matter content of basal resources decreases in sparse Posidonia meadows and 
species trophic generalism increases (Calizza et al. 2013). Therefore, we suppose that the trophic 
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plasticity of the holothurians at Salamandre is due to the poor state of their Posidonia meadows. Indeed, 
according to the optimal foraging theory, the trophic niche broadening is a consequence of disturbance, 
decrease in the quality of available resources, and reduced food availability, where the consumers relying 
on a scarcity of preferred food items are required to add less profitable resources to their diet (Pyke et al. 
1977; Rossi et al. 2015). This situation constrained the consumers to forage at greater distances, which 
may enable them to target various resources with diverse δ13C values. 

Conclusion

We did not run a mixing model to determine the respective contributions of food sources to holothurian 
diet.  Sea cucumber isotopic values did not fit the mixing polygon determined by isotopic composition 
of food sources, which is a basic assumption for applying mixing models (e.g., Fry 2006). To apply a 
mixing model to our data, it would be necessary to experimentally determine fractionation factors (i.e., 
isotopic differences between diet and sea cucumber tissues). We predict that these factors would be 
more elevated than generally assumed for detrivorous animal, as that is the only way to explain such 
discrepancy between consumer δ15N values and those of their potential food sources. 
From the δ13C data, we observed that, in this disturbed area, holothurians could not exploit the same food 
sources as in a pristine seagrass meadow (i.e., Calvi Bay, Corsica), with, probably, a lower contribution 
of seagrass material to the holothurians’ diet than would occur in a pristine area. The holothurian species 
studied here were able to respond to P. oceanica local conditions by adapting resources utilization. We 
also showed that the four species shared a large part of their trophic niches and that, if niche segregation 
occurs, it is not in terms of general food sources use but, more likely, in term of habitat size, micro-
habitat use and behavioral differences.

Acknowledgements

The first author expresses his sincere thanks to Abdelhamid Ibn Badis University of Mostaganem 
(Algeria) for providing the necessary financial assistance to carry out a short-term internship at the 
Laboratory of Oceanology of the Liège University (Belgium). The first author kindly thanks all the 
members of Oceanology Laboratory of Liège University (Belgium) for their help in the isotopic 
analyses and statistical data processing. G.L. is Research Associate at Fonds National de la Recherche 
Scientifique (FRS-FNRS). The authors thank the two anonymous reviewers and the associate editor for 
their constructive comments.

References

Amaro T., Bianchelli S., Billett D.S.M., Cunha M.R., Pusceddu A. & Danovaro R. 
(2010). The trophic biology of the holothurian Molpadia musculus: implications for organic matter 
cycling and ecosystem functioning in a deep submarine canyon. Biogeosciences 7: 2419–2432. 
https://doi.org/10.5194/bg-7-2419-2010 
Bearhop S., Adams C.E., Waldron S., Fuller R.A. & Macleod H. (2004). Determining trophic 
niche width: a novel approach using stable isotope analysis. Journal of Animal Ecology 73 (5): 1007–
1012. https://doi.org/10.1111/j.0021-8790.2004.00861.x
Belbachir N. (2012). Contribution à l’étude écologique de l’herbier à Posidonia oceanica (L.) Delile 
(1813) de la frange côtière de Mostaganem : Etat de santé et relation entre plante et échinoderme. 
Magister thesis. Abdelhamid Ibn Badis University-Mostaganem. Algeria, 178 pp.
Belbachir N & Mezali K. (2018). Food preferences of four aspidochirotid holothurians species 
(Holothuroidea: Echinodermata) inhabiting the Posidonia oceanica meadow of Mostaganem area 
(Algeria). SPC Bêche-de-mer Information Bulletin 38: 55–59.

BELBACHIR N.E. et al., Comparison of isotopic niches of sea cucumbers in the SW Mediterranean

https://doi.org/10.5194/bg-7-2419-2010
https://doi.org/10.1111/j.0021-8790.2004.00861.x


104

Belbachir N., Mezali K. & Soualili D.L. (2014). Selective feeding behaviour in some aspidochirotid 
holothurians (Echinodermata: Holothuroidea) at Stidia, Mostaganem Province, Algeria. SPC Bêche-de-
mer Information Bulletin 34: 34–37.
Benzait H. (2015). Contribution à l’évaluation de la Biodiversité des Echinodermes de la région côtière 
de Mostaganem. Magister thesis. Abdelhamid Ibn Badis University-Mostaganem. Algeria, 122 pp.
Boudouresque C.F., Bernard G., Bonhomme P., Charbonnel E., Diviacco G., Meinesz A., 
Pergent G., Pergent-Martini C., Ruitton S. & Tunesi L. (2006). Préservation et conservation des 
herbiers à Posidonia oceanica. Ramoge publications, Monaco: 1–200.
Calizza E., Costantini M.L., Carlino P., Bentivoglio F., Orlandi L. & Rossi L. (2013). 
Posidonia oceanica habitat loss and changes in litter-associated biodiversity organization: A 
stable isotope-based preliminary study. Estuarine, Coastal and Shelf Science 135: 137–145. 
https://doi.org/10.1016/j.ecss.2013.07.019
Caraveo-Patino J. & Soto L.A. (2005). Stable carbon isotope ratios for the gray whale (Eschrichtius 
robustus) in the breeding grounds of Baja California Sur, Mexico. Hydrobiologia 539 (1): 99–104. 
https://doi.org/10.1007/s10750-004-3370-0 
Cole M.L., Kroeger K.D., McClelland J.W & Valiela I. (2005). Macrophytes as indicators of 
land-derived wastewater: Application of a δ15N method in aquatic systems. Water Resources Research 
41: W01014. https://doi.org/10.1029/2004WR003269
Coplen T.B. (2011). Guidelines and recommended terms for expression of stable-isotope-ratio and 
gas-ratio measurements results. Rapid Communications in Mass Spectrometry 25 (17): 2538– 2560. 
https://doi.org/10.1002/rcm.5129
Costa V., Mazzola A. & Vizzini S. (2014). Holothuria tubulosa Gmelin 1791 (Holothuroidea, 
Echinodermata) enhances organic matter recycling in Posidonia oceanica meadows. Journal of 
Experimental Marine Biology and Ecology 461: 226–232. https://doi.org/10.1016/j.jembe.2014.08.008
Coulon P. & Jangoux M. (1993). Feeding rate and sediment reworking by the holothuroid Holothuria 
tubulosa (Echinodermata) in a Mediterranean seagrass bed of Ischia Island, Italy. Marine Ecology 
Progress Series 92: 201–204.
Cooper M.J., Uzarski D.G. & Burton T.M. (2007). Macroinvertebrate community 
composition in relation to anthropogenic disturbance, vegetation, and organic sediment depth 
in four lake Michigan drowned river-mouth wetlands samples. Wetlands 27 (4): 894–903. 
https://doi.org/10.1672/0277-5212(2007)27[894:MCCIRT]2.0.CO;2 
Dalerum F. & Angerbjorn A. (2005). Resolving temporal variation in vertebrate diets using naturally 
occurring stable isotopes. Oecologia 144 (4): 647–658. https://doi.org/10.1007/s00442-005-0118-0 
Dauby P. & Poulicek M. (1995). Methods for removing epiphytes from seagrasses: SEM observations 
on treated leaves. Aquatic Botany 52 (3): 217–228. https://doi.org/10.1016/0304-3770(95)00500-5 
Dromard C. (2013). Niches trophiques des poissons herbivores des Antilles : apports des isotopes 
stables. PhD Thesis, University of Antilles and la Guyane. 254 pp.  
Finlay J.C. & Kendall C. (2007). Stable isotope tracing of temporal and spatial variability in organic 
matter sources to freshwater ecosytems. In: Michener R. & Lajtha K. (eds) Stable Isotopes in Ecology 
and Environmental Science: 283–333. Blackwell, Oxford.
Francour P. (1990). Dynamique de l’écosystème à Posidonia oceanica dans le Parc national de Port-
Cros. Analyse des compartiments “matte”, litière, faune vagile, échinodermes et poissons. PhD Thesis, 
Pierre et Marie Curie University, Paris VI, 373 pp.
Fry B. (2006). Stable Isotope Ecology. Springer, Science Business Media, USA. 
https://doi.org/10.1007/0-387-33745-8 
Giraud G. (1977). Essai de classement des herbiers de Posidonia oceanica (Linné) Delile. Botanica 
Marina 20 (8): 487–491. https://doi.org/10.1515/botm.1977.20.8.487 

Belg. J. Zool. 149 (1): 95–106 (2019)

https://doi.org/10.1016/j.ecss.2013.07.019
https://doi.org/10.1007/s10750-004-3370-0
https://doi.org/10.1029/2004WR003269
https://doi.org/10.1002/rcm.5129
https://doi.org/10.1016/j.jembe.2014.08.008
https://doi.org/10.1672/0277-5212(2007)27[894:MCCIRT]2.0.CO;2
https://doi.org/10.1007/s00442-005-0118-0
https://doi.org/10.1016/0304-3770(95)00500-5
https://doi.org/10.1007/0-387-33745-8
https://doi.org/10.1515/botm.1977.20.8.487


105

Gobert S., Cambridge M.T., Velimirov B., Pergent G., Lepoint G., Bouquegneau J.M., Dauby P., 
Pergent-Martini C. & Walker D.I. (2006). Biology of Posidonia. In: Larkum A.W.D., Orth R.J. & 
Duarte C.M. (eds) Seagrasses: Biology, Ecology and Conservation. 387–408. Springer Netherlands, 
Dordrecht. https://doi.org/10.1007/978-1-4020-2983-7_17 
İşgören-Emiroğlu D. & Günay D. (2007). The effect of sea cucumber Holothuria tubulosa (G., 
1788) on nutrient and sediment of Aegean Sea shores. Pakistan Journal of Biological Sciences 10 (4): 
586–589. https://doi.org/10.3923/pjbs.2007.586.589 
Jackson A.L., Inger R., Parnell A.C. & Bearhop S. (2011). Comparing isotopic niche widths among 
and within communities: SIBER – Stable Isotope Bayesian Ellipses in R. Journal of Animal Ecology 80 
(3): 595–602. https://doi.org/10.1111/j.1365-2656.2011.01806.x
Jarman S.N., Gales N.J., Tierney M., Gill P.C. & Elliott N.G. (2002). A DNA-based method for 
identification of krill species and its application to analyzing the diet of marine vertebrate predators. 
Molecular Ecology 11 (12): 2679–2690. https://doi.org/10.1046/j.1365-294X.2002.01641.x
Lassauque J., Lepoint G., Thibaut T., Francour P. & Meinesz A. (2010). Tracing sewage and natural 
freshwater input in a Northwest Mediterranean bay: Evidence obtained from isotopic ratios in marine 
organisms. Marine Pollution Bulletin 60: 843–851. https://doi.org/10.1016/j.marpolbul.2010.01.008  
Lepoint G., Nyssen F., Gobert S., Dauby P. & Bouquegneau J.M. (2000). Relative impact of a 
seagrass bed and its adjacent epilithic algal community in consumer diets. Marine Biology 136 (3): 
513–518. https://doi.org/10.1007/s002270050711 
Mactavish T., Stenton-Dozey J., Vopel K. & Savage C. (2012). Deposit feeding sea cucumbers 
enhance mineralization and nutrient cycling in organically-enriched coastal sediments. PLoS ONE 7 
(11): e50031. https://doi.org/10.1371/journal.pone.0050031
Mascart T., De Troch M., Remy F., Michel L.N. & Lepoint G. (2018). Seasonal dependence 
on seagrass detritus and trophic niche partitioning in four copepod eco-morphotypes. Food webs 16: 
e00086. https://doi.org/10.1016/j.fooweb.2018.e00086
Mezali K. (2004). Micro-répartition des holothuries aspidochirotes au sein de l’herbier de Posidonies 
de la presqu’île de Sidi-Fredj - Algérie. Rapports P.V. Commission International pour l’Exploration 
Scientifique de la Mer Méditerranée, Monaco, Vol. 37, p 534.
Mezali K. (2008). Phylogénie, Systématique, dynamique des populations et nutrition de quelques 
espèces d’holothuries aspidochirotes (Holothuroidea: Echinodermata) inféodées aux herbiers de 
Posidonies de la côte algéroise. PhD thesis. University of Science and Technology Houari Boumediene. 
Alger, Algeria. 208 pp.
Mezali K. & Soualili D.L. (2013). Capacité de sélection des particules sédimentaires et de la matière 
organique chez les holothuries. SPC Bêche-de-mer Information Bulletin 33: 38–43.
Mezali K., Chekaba B., Zupo V. & Asslah B. (2003). Comportement alimentaire de cinq espèces 
d’holothuries aspidochirotes (Holothuroidea: Echinodermata) de la presqu’île de Sidi-Fredj (Algérie). 
Bulletin de la Société zoologique de France 128 (1): 1–14.
Ogden L.J.E., Hobson K.A. & Lank D.B. (2004). Blood isotopic (δ13C and δ15N) turnover and 
diet-tissue fractionation factors in captive dunlin (Calidris alpina pacifica). The Auk: Ornithological 
Advances 121 (1) : 170–177. https://doi.org/10.1642/0004-8038(2004)121[0170:BICANT]2.0.CO;2
Pergent G., Pergent-Martini C. & Boudouresque C.F. (1995). Utilisation de l’herbier à Posidonia 
oceanica comme indicateur biologique de la qualité du milieu littoral en Méditerranée  : état des 
connaissances. Mésogée 54: 3–29.
Purcell S., Mercier A., Conand C., Hamel J.F., Toral-Granda M.V., Lovatelli A. & Uthicke S. 
(2013). Sea cucumber fisheries: global analysis of stocks, management measures and drivers of 
overfishing. Fish and Fisheries 14 (1): 34–59. https://doi.org/10.1111/j.1467-2979.2011.00443.x

BELBACHIR N.E. et al., Comparison of isotopic niches of sea cucumbers in the SW Mediterranean

https://doi.org/10.1007/978-1-4020-2983-7_17
https://doi.org/10.3923/pjbs.2007.586.589
https://doi.org/10.1111/j.1365-2656.2011.01806.x
https://doi.org/10.1046/j.1365-294X.2002.01641.x
https://doi.org/10.1016/j.marpolbul.2010.01.008
https://doi.org/10.1007/s002270050711
https://doi.org/10.1371/journal.pone.0050031
https://doi.org/10.1016/j.fooweb.2018.e00086
https://doi.org/10.1642/0004-8038(2004)121[0170:BICANT]2.0.CO;2
https://doi.org/10.1111/j.1467-2979.2011.00443.x


106

Pyke G.H., Pulliam H.R., & Charnov E.L. (1977). Optimal foraging: A selective review of theory 
and tests. Quaternary Review of Biology 52: 137–154. https://doi.org/10.1086/409852
R Core Team 2017. R: A Language and Environment for Statistical Computing. R Foundation for 
Statistical Computing, Vienna, Austria. Available from https://www.R-project.org/ [accessed 29 May 
2019].
Remy F., Mascart T., De Troch M., Michel L. & Lepoint G. (2018). Seagrass organic matter transfer 
in Posidonia oceanica macrophytodetritus accumulations. Estuarine, Coastal and Shelf Science 212: 
73–79. https://doi.org/10.1016/j.ecss.2018.07.001
Ricart A.M., Dalmau A., Pérez M. & Romero J. (2015). Effects of landscape configuration on 
the exchange of materials in seagrass ecosystems. Marine Ecology Progress Series 532: 89–100. 
https://doi.org/10.3354/meps11384 
Richir J., Salivas-Decaux M., Lafabrie C., Lopez Y Royo C., Gobert S., Pergent G. & 
Pergent-Martini C. (2015). Bioassessment of trace element contamination of Mediterranean coastal 
waters using the seagrass Posidonia oceanica. Journal of Environmental Management 151: 486–499. 
https://doi.org/10.1016/j.jenvman.2014.11.015
Rossi L., Di Lascio A., Carlino P., Calizza E. & Costantini M.L. (2015). Predator and detritivore 
niche width helps to explain biocomplexity of experimental detritus-based food webs in four aquatic and 
terrestrial ecosystems. Ecological Complexity 23: 14–24. https://doi.org/10.1016/j.ecocom.2015.04.005
Sicuro B., Piccinno M., Gai F., Abete M.C., Danieli A., Dapra F., Mioletti S. & Vilella S. 
(2012). Food quality and safety of Mediterranean sea cucumbers Holothuria tubulosa and Holothuria 
polii in southern Adriatic Sea. Asian Journal of Animal and Veterinary Advances 7 (9): 851–859. 
https://doi.org/10.3923/ajava.2012.851.859 
Smith S.C. & Whitehead H. (2000). The diet of Galapagos sperm whales Physeter 
macrocephalus as indicated by fecal sample analysis. Marine Mammal Science 16 (2): 315–325. 
https://doi.org/10.1111/j.1748-7692.2000.tb00927.x 
Sonnenholzner J. (2003). Seasonal variation in the food composition of Holothuria theeli 
(Holothuroidea: Aspidochirotida) with observations on density and distribution patterns at the central 
coast of Ecuador. Bulletin of Marine Science 73 (3): 527–543.
Soualili D., Dubois P., Gosselin P., Pernet P. & Guillou M. (2008). Assessment of seawater 
pollution by heavy metals in the neighbourhood of Algiers: use of the sea urchin, Paracentrotus lividus, 
as a bioindicator. ICES Journal of Marine Science 65: 132–139. https://doi.org/10.1093/icesjms/fsm183
Tieszen L.L., Boutton T.W., Tesdahl K.G. & Slade N.A. (1983). Fractionation and turnover of 
stable carbon isotopes in animal tissues: implications for δ13C analysis of diet. Oecologia 57  : 32–
37. https://doi.org/10.1007/BF00379558 
Vermeulen S., Sturaro N., Gobert S., Bouquegneau J.M. & Lepoint G. (2011). Potential early 
indicators of anthropogenically derived nutrients: a multiscale stable isotope analysis. Marine Ecology 
Progress Series 422: 9–22. https://doi.org/10.3354/meps08919 
Vizzini S. (2009). Analysis of the trophic role of Mediterranean seagrasses in marine coastal ecosystems: 
a review. Botanica Marina 52 (5): 383–393. https://doi.org/10.1515/BOT.2009.056.  
Walker D.I., Pergent G. & Fazi S. (2001). Seagrass decomposition. In: Short F.T. & Cole R.G. 
(eds) Global Seagrass Research Methods: 313–324. Elsevier Scientific Publishers B.V., Amsterdam.

Manuscript received: 21 October 2018
Manuscript accepted: 14 May 2019
Published on: 11 July 2019
Branch editor: Marleen De Troch

Belg. J. Zool. 149 (1): 95–106 (2019)

https://doi.org/10.1086/409852
https://www.R-project.org/
https://doi.org/10.1016/j.ecss.2018.07.001
https://doi.org/10.3354/meps11384
https://doi.org/10.1016/j.jenvman.2014.11.015
https://doi.org/10.1016/j.ecocom.2015.04.005
https://doi.org/10.3923/ajava.2012.851.859
https://doi.org/10.1111/j.1748-7692.2000.tb00927.x
https://doi.org/10.1093/icesjms/fsm183
https://doi.org/10.1007/BF00379558
https://doi.org/10.3354/meps08919
https://doi.org/10.1515/BOT.2009.056

