

Belgian Journal of Zoology

www.belgianjournalzoology.be

CC BY

This work is licensed under a Creative Commons Attribution License (CC BY 4.0). ISSN 2295-0451

Short note

https://doi.org/10.26496/bjz.2019.27

Anthonomus spilotus (Coleoptera: Curculionidae): new to the Belgian fauna

Rik Clymans¹, Charles de Schaetzen¹, Marc Delbol^{2,3}, Negin Ebrahimi⁴, Hans Casteels⁴, Tim Belien^{1,*} & Dany Bylemans^{1,5}

 ¹pcfruit npo (research centre for fruit cultivation), Fruittuinweg 1, 3800 Sint-Truiden, Belgium.
²Royal Belgian Institute of Natural Sciences, Vautierstraat 29, 1000 Brussels, Belgium.
³Gembloux Agro-Bio Tech (University of Liège), Passage des Déportés 2, 5030 Gembloux, Belgium.
⁴ILVO (Flanders Research Institute for Agriculture, Fisheries and Food), Burg. Van Gansberghelaan 96, 9820 Merelbeke, Belgium.
⁵KULeuven - University of Leuven, Department of Biosystems, Willem de Croylaan 42, 3001 Leuven, Belgium.

*Corresponding author: tim.belien@pcfruit.be

Keywords. Anthonomus spilotus, Curculionidae, Pyrus, distribution, fruit pest.

CLYMANS R., DE SCHAETZEN C., DELBOL M., EBRAHIMI N., CASTEELS H., BELIEN T. & BYLEMANS D. (2019). *Anthonomus spilotus* (Coleoptera: Curculionidae): new to the Belgian fauna. *Belgian Journal of Zoology* 149 (1): 15–21. https://doi.org/10.26496/bjz.2019.27

In Belgium there are fifteen species of the genus *Anthonomus* Germar 1817. Thirteen of these species are monophagous or oligophagous on Rosaceae [1] and four of them are considered economically important pests in Belgian fruit production: *Anthonomus pomorum* (Linnaeus, 1758) (apple), *Anthonomus pyri* (Gyllenhal, 1835) (apple, pear) [2], *Anthonomus rubi* (Herbst, 1795) (strawberry, raspberry, blackberry) and *Anthonomus rectirostris* (Linnaeus, 1758) (cherry). These species are omnipresent in Belgium and almost all of Europe. *Anthonomus spilotus* (Redtenbacher, 1847) (Fig. 1), a species that lives on *Pyrus* sp. [3,4,5,6,7,8,9,10], *Crataegus* sp. [4,7,8,10] and *Mespilus germanica* [4,7,8,10] seems to be as widespread in Europe as the earlier mentioned species of *Anthonomus*, however, its distribution and biology are poorly documented. *A. spilotus* has been observed in Belgium from 2014 onwards in nine locations with indications already of its presence in high numbers since 2012 (Table 1). The distribution and biology of *A. spilotus* in Europe will be clarified based on a literature overview and the recent findings of this species in Belgium.

Anthonomus spilotus was first described by REDTENBACHER (1847), who mentioned it to be not uncommon in fruit trees in Austria (Upper Austria). Most literature on *A. spilotus* appeared in the context of plant protection in pear growing, with the most reports from France. PUSSARD (1930) described the large populations in pear plantations in the Rhône valley and mentioned earlier reports from the south: Montpellier, Marseille, the Pyrenees and Corsica but also from more north: Allier, Nièvre, Seine-et-Marne, Seine-et-Oise (now Essonne, Yvelines and Val-d'Oise), Calvados, Oise, Aube and Somme. Later publications confirmed *A. spilotus* to be a pest of pear in almost all France [11,10] although rare in the north and Paris Basin [5,9]. INRA (French National Institute for Agricultural Research) has specimens in collection from Indre-et-Loire 2010 and barcoded the DNA of the species [12]. *Anthonomus spilotus* is also considered present in Switzerland [11] and BOVEY & BAGGIOLINI (1967) reported it as a pest of pear trees in Romandy although only sporadically, and often overlooked. The weevil is also found in Germany [11]. RHEINHEIMER & HASSLER (2010) stated that A. spilotus is rare or even regionally disappeared in Germany, without recorded economic damage in pear orchards. Almost all records are from south and south-west Germany with all recent observations from Baden, Palatinate and Rhineland. The supposed presence of A. spilotus in The Netherlands is based on a species list from 1966 [11,13] but observations are rare or non-existent. A. spilotus is considered absent in Poland [14] but is present in Ukraine (Western Ukraine, Pruto-Dnistrovs'ke Mezhyrichchia) [15], Hungary [11] and Russia [11]. In the Czech Republic this weevil is considered present [11] but regionally endangered [16]. A. spilotus even occurs as far north as Southern Sweden [11,7], in particular Öland and Scania [14] with a recent specimen in the collection of the Naturhistoriska Riksmuseet [17]. A. spilotus is also reported in Southern Europe and Northern Africa with reports from Italy [11,5], Greece [11,5], Spain [11], Portugal [11], Morocco [3,4,10] and Algeria [3,4,10]. In the United Kingdom (Kent), A. spilotus was recorded for the first time in 2017 in pear orchards where it was already considered present for more than three years [8]. An overview of the countries with reports of A. spilotus is given in Figure 2. From the above it becomes clear that although widespread in Europe, A. spilotus is considered rare in most countries. This species was considered abundant and an occasional pest of pear only in France and even there recent records are rare. However, A. spilotus has recently appeared in high numbers in the UK and Belgium. While for the UK it is thought to be newly imported [8], it is possible that A. spilotus was a rare and overlooked species in Belgium, hence having a similar status as in Northern France, Northern Germany and The Netherlands. It is, however, remarkable how an overlooked species could become an economically important pest species in a few years. This could indicate that its habitat conditions have somehow become more favourable. These favourable conditions could possibly be explained partially by climate change and/or a shift in insecticide use in pear growing.

In Belgium, *A. spilotus* was always considered present [11] based on its occurrence in neighbouring countries, without actual reported findings or specimens in collections. Recently the species was observed at nine locations (two natural reserves and seven pear orchards). An overview of the observations is given in Table 1; the sampling locations are depicted in Fig. 2B. In 2014, a single observation of *A. spilotus* was made on wild pear in a natural reserve in Han-sur-Lesse (Location b). In 2015, observations were not only made on wild pear in Auffe (Location c) but also a large population was found in a commercial pear orchard in Boëlhe (Location a), where it had already been observed for three years. In 2016, signs

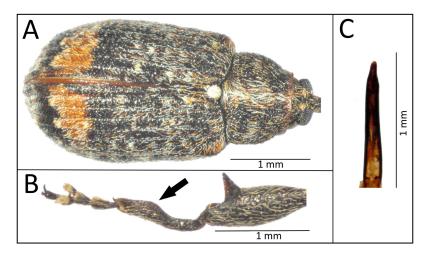


Fig. 1 – Morphological characteristics of *Anthonomus spilotus* Germar, 1817. A. Elytra, pronotum and head: forehead hairs directed towards the eyes and reaching over them, elytra elongated and not widening near the end and pale elytral fascia. **B**. Foreleg: inside of protibia strongly curved at the apical half (arrow). **C**. Median lobe of aedeagus: slightly asymmetrical and narrowly pointed.

TABLE 1

List of observations of Anthonomus spilotus in Belgium.

Date		Observations				Host	Location				
үүүү	мм	DD	N°	Life stage(s)	Signs of presence on the host plant	Certainty	Species	Habitat type	Code	Municipality	Province
2012	-	-	1	-	Curled/deformed leaves with necrotic edges (pupal chambers)	Likely	Pyrus communis L. cv. Conference	Orchard	a	Geer	Liège
2013	-	-	2	-	Curled/deformed leaves with necrotic edges (pupal chambers)	Likely	Pyrus communis L. cv. Conference	Orchard	а	Geer	Liège
2014	-	-	3	-	Curled/deformed leaves with necrotic edges (pupal chambers)	Likely	Pyrus communis L. cv. Conference	Orchard	а	Geer	Liège
2014	06	-	4	Adult	-	Certain	Pyrus pyraster	Nature reserve	b	Rochefort	Namur
2015	04	-	5	Adult	-	Certain	Pyrus pyraster	Nature reserve	с	Rochefort	Namur
2015	05	07	6	Larvae	Strong reduction in foliage and fruit set	Certain	Pyrus communis L. cv. Conference	Orchard	a	Geer	Liège
2015	05	-	7	Adult	-	Certain	Pyrus pyraster	Nature reserve	c	Rochefort	Namur
2015	06	12	8	Adults	-	Certain	Pyrus communis L. cv. Conference	Orchard	а	Geer	Liège
2016	-	-	9	-	Curled/deformed leaves with necrotic edges (pupal chambers)	Likely	Pyrus communis L. cv. Conference	Orchard	d	Gingelom	Limburg
2017	03	31	10	-	Punctures in leaf buds	Likely	Pyrus communis L. cv. Conference	Orchard	e	Faimes	Liège
2017	04	10	11	Larvae/ Adult	Punctures in leaf buds + curled leaves with necrotic edges	Certain	Pyrus communis L. cv. Conference	Orchard	d	Gingelom	Limburg
2017	04	12	12	Larvae/ Adult	Punctures in leaf buds + curled leaves with necrotic edges	Certain	Pyrus communis L. cv. Conference	Orchard	d	Gingelom	Limburg
2017	04	26	13	Larvae/ Pupae	Pupal chambers on leaves + delayed/inhibited sprouting of leaf buds	Certain	Pyrus communis L. cv. Conference	Orchard	d	Gingelom	Limburg
2017	04	26	14	Larvae/ Pupae	Pupal chambers on leaves + delayed/inhibited sprouting of leaf buds	Certain	Pyrus communis L. cv. Conference	Orchard	f	Gingelom	Limburg
2017	05	26	15	Adults	-	Certain	Pyrus communis L. cv. Conference	Orchard	d	Gingelom	Limburg
2017	05	26	16	Adults	-	Certain	Pyrus communis L. cv. Conference	Orchard	f	Gingelom	Limburg
2017	05	31	17	Adults	Small holes in leaves made by feeding adults	Certain	Pyrus communis L. cv. Conference	Orchard	d	Gingelom	Limburg
2017	05	31	18	Adults	Small holes in leaves made by feeding adults	Certain	Pyrus communis L. cv. Conference	Orchard	f	Gingelom	Limburg
2018	03	16	19	Adult		Certain	Pyrus communis L. cv. Conference	Orchard	f	Gingelom	Limburg
2018	03	30	20	Adults/ Eggs/ Larvae	Punctures in leaf buds + curled leaves	Certain	Pyrus communis L. cv. Conference	Orchard	f	Gingelom	Limburg
2018	04	06	21	Adults	Punctures in leaf buds + curled leaves + reduction in foliage	Certain	Pyrus communis L. cv. Conference	Orchard	f	Gingelom	Limburg
2018	04	09	22	Adults	Punctures in leaf buds	Certain	Pyrus communis L. cv. Conference	Orchard	а	Geer	Liège
2018	04	09	23	Adults/ Larvae	Punctures in leaf buds + curled leaves	Certain	Pyrus communis L. cv. Conference	Orchard	g	Kortessem	Limburg
2018	04	20	24	Adults/ Larvae	Curled leaves	Certain	Pyrus communis L. cv. Conference	Orchard	g	Kortessem	Limburg
2018	05	02	25	Adults/ Lar- vae/ Pupae	Pupal chambers on leaves	Certain	Pyrus communis L. cv. Conference	Orchard	g	Kortessem	Limburg
2018	05	07	26	Adults/ Pupae	Pupal chambers on leaves	Certain	Pyrus communis L. cv. Conference	Orchard	g	Kortessem	Limburg
2018	05	16	27	Adult	-	Certain	Pyrus communis L. cv. Conference	Orchard	a	Geer	Liège
2018	05	16	28	Adults	-	Certain	Pyrus communis L. cv. Conference	Orchard	h	Hoeselt	Limburg
2018	05	16	29	Adults	-	Certain	Pyrus communis L. cv. Conference	Orchard	f	Gingelom	Limburg
2018	05	16	30	Adults/ Lar- vae/ Pupae	Pupal chambers on leaves + redution in foliage	Certain	Pyrus communis L. cv. Conference	Orchard	i	Riemst	Limburg
2018	05	29	31	Adults/ Lar- vae/ Pupae	Pupal chambers on leaves	Certain	Pyrus communis L. cv. Conference	Orchard	i	Riemst	Limburg
2018	06	04	32	Adults/ Pupae	Pupal chambers on leaves + small holes in leaves made by feeding adults	Certain	Pyrus communis L. cv. Conference	Orchard	i	Riemst	Limburg
2018	06	18	33	Adults	Small holes in leaves made by feeding adults	Certain	Pyrus communis L. cv. Conference	Orchard	i	Riemst	Limburg

of its presence were noticed in a second pear orchard in Jeuk (Location d) and in 2017, the population in this orchard was confirmed. At about 1 km from the latter, another pear orchard (Location f) was found to host a population of *A. spilotus* in 2017. Also in 2017, a pear orchard with signs of *A. spilotus* was discovered in Les Waleffes (Location e). In 2018, *A. spilotus* was detected in the other three pear orchards: in Kortessem (Location g), Hoeselt (Location h) and Membruggen (Location i). The latter location contained a large population.

Specimens from Location d and f of 2017 were identified using the key of DIECKMANN (1968) and were added to the collections of the Royal Belgian Institute of Natural Sciences. Morphological characteristics for *A. spilotus* are depicted in Fig. 1: forehead hairs directed towards the eyes and reaching over them, elytra elongated and not widening near the end, pale elytral fascia, inside of protibia strongly curved at the apical half and median lobe slightly asymmetrical and narrowly pointed. Specimens from Location i of 2018 were also molecularly identified as follows: genomic DNA was isolated from individual adults using the Qiagen DNeasy Blood and Tissue Kit (Qiagen Inc, Germany) following the manufacturer's protocol. The *COI* (Cytochrome c oxidase subunit 1) region was amplified using primer cocktails designed by CRUAUD *et al.* 2010 [18] and GERMAIN *et al.* 2013 [19] (Table 2). PCR was carried out in a 50 µl reaction volume including 2 µl of genomic DNA, 22 µl of Milli-Q and 25 µl of BIO-X-ACTTM Short Mix and 0.2 µl of each 10 µM primer cocktail. PCR conditions for *COI* were: 94°C for three minutes, five cycles of 94°C for 30 seconds, 45°C for 30 seconds and 72°C for 60 seconds, followed by 35 cycles of 94°C for 30 seconds, 51°C for 60 seconds and 72°C for 60 seconds, with a final extension at 72°C for 10 minutes. PCR products were purified and sent for sequencing using M13F (5'-TGTAAAACGACGGCCAGT-3') and M13R (5'-CAGGAAACAGCTATGAC-3') primers [20]. The

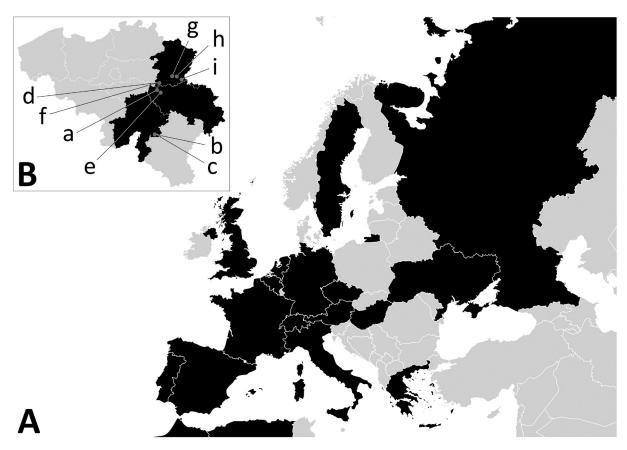


Fig. 2 – A. Overview of the geographical distribution of *Anthonomus spilotus* in Europe, the species is considered (at least regionally) present in the countries marked in black. **B**. Overview of the Belgian locations where *A. spilotus* was found, letters referring to the location codes in Table 1.

TABLE 2

PCR primer cocktails used to amplify COI.

Primer name	Primer sequence (5'-3')						
Forward							
LCO1490puc_t1	TGTAAAACGACGGCCAGTTTTCAACWAATCATAAAGATATTGG	[18]					
LCO1490Hem1_t1	TGTAAAACGACGGCCAGTTTTCAACTAAYCATAARGATATYGG	[19]					
Reverse							
HCO2198puc_t1	CAGGAAACAGCTATGACTAAACTTCWGGRTGWCCAAARAATCA	[18]					
HCO2198Hem2_t1	CAGGAAACAGCTATGACTAAACYTCAGGATGACCAAAAAAYCA	[19]					
HCO2198Hem1_t1	CAGGAAACAGCTATGACTAAACYTCDGGATGBCCAAARAATCA	[19]					

quality of the Sanger sequencing reads was first assessed in Sequence Scanner v2.0. The sequences were edited and analysed using software packages of Chromas 2.00 (Technelysium, Helensvale, QLD, Australia) and BioEdit 7.0.4.1 [21]. The INRA in-house reference sequence of *A. spilotus* [12] and the sequence of a closely related and most morphologically similar species, *Anthonomus ulmi* (DeGeer, 1775), available in the GenBank: KM450134.1 [22], were also imported in BioEdit. The alignment of

	10	20	30	40	50	60	70	80
pcfruit A.spilotus COI	 GCCAGTTTTCAACTA							
INRA_CCOC11339_0101_A. spilotu								
KM450134.1_A. ulmi_COIGenbank			••••	•••••	T	•••••	T T	.A
	90	100	110	120	130	140	150	160
pcfruit Anthonomus sp COI	 TTAAGTATACTAATT							
INRA_CCOC11339_0101_A. spilotu								
KM450134.1_A. ulmi_COIGenbank	AG	A	••••••	G	••••••	т.	c	••••
	170	180	190	200	210	220	230	240
pcfruit_Anthonomus sp_COI INRA CCOC11339 0101 A. spilotu	AGCCCATGCATTCAT							
KM450134.1_A. ulmi_COIGenbank	т.							
	250	260	270	280	290	300	310	320
pcfruit_Anthonomus sp_COI INRA CCOC11339 0101 A. spilotu	TACTTGCTGCCCCAG	ATATAGCCTT	TCCCCGACT	AATAATATA	AGATTTTGGCT	TTTACCACCI	TCTTTAACTC	FACTT
KM450134.1_A. ulmi_COIGenbank								
	330	340	250	260	370	200	390	400
pcfruit_Anthonomus_sp_COI	ATTATAAGAAGAATT	ATTGGAAAAO	GAGCCGGAA	AGGATGAAC	AGTATATCCCC	CACTTTCATC	AAATTTAGCC	CATGA
INRA_CCOC11339_0101_A. spilotu KM450134.1 A. ulmi COIGenbank								
	410						470	
pcfruit_Anthonomus sp_COI	AGGGGCTTCAGTAGA	TTTTGCTATT	TTTAGTTTAG	ATATAGCTG	GAATCTCCTCA	ATTCTAGGAG	CAATAAATTT	FATTT
INRA_CCOC11339_0101_A. spilotu KM450134.1 A. ulmi COIGenbank	TC							
		••••••						
	490	500	510	520	530	540	550	560
pcfruit_Anthonomus sp_COI	CTACTGTTCTTAATA	TAAAACCATC	AGGAATAAA	CTAGAACAA	ATACCCTTATT	TGCATGAGC1	GTAAAAATTA	CAGCA
INRA_CCOC11339_0101_A. spilotu KM450134.1 A. ulmi COIGenbank								
MAJOIJ4.1_A. UIMI_COIGENDAIK	.AA		·	•••••				
	570 				610			640
pcfruit Anthonomus sp COI	ATTCTATTATTAATT							
INRA_CCOC11339_0101_A. spilotu								
KM450134.1_A. ulmi_COIGenbank		C.T	•••••		· · · · · · · · · · · · · · · · · · ·	•••••	C	• • • • •
					690			
pcfruit Anthonomus sp COI	CTTTGACCCAGCAGG	GGGAGGAGAG	CCAATTTTAT		 <mark>PATTTTGATTC</mark>	TTTGG		
INRA_CCOC11339_0101_A. spilotu								
KM450134.1 A. ulmi COIGenbank	TTT.	A T	•••••	.TT.	••••			

Fig. 3 – Alignment of *COI* sequences of the Belgian population of *Anthonomus spilotus* (Location i, 2018), The French population of *A. spilotus* (Indre-et Loire, 2010) and *Anthonomus ulmi*.

the sequences showed 99% and 91% similarity between the Belgian specimens and the French (Indreet-Loire) population of *A. spilotus* and *A. ulmi*, respectively (Fig. 3). It is therefore both morphologically and molecularly confirmed that *A. spilotus* is present in Belgian pear orchards.

When rearing adults from collected pupae (Locations d and f in 2017, Location i in 2018), parasitoid wasps (Hymenoptera: Pteromalidae and Hymenoptera: Ichneumonidae) emerged, indicating the presence of antagonists of this species in Belgium.

A tentative phenology of *A. spilotus* in Belgium can be drawn up from the observations in Table 1. Overall adult activity was observed from end March till June, which is in line with the biology described from neighbouring countries: the end of hibernation/start of oviposition occurred at the end of March [5,3,7] and emergence of the new generation adults took place in June [7,3]. The characteristic feeding and oviposition punctures with droplets of plant sap made by the hibernated adults in leaf buds, leaf petioles and spurs and the resulting inhibited sprouting, leaf drop and deformations [3,9,7] were clearly observed. The leaf feeding of the new adults before aestivation [7] could also be seen. The larvae that were observed were mostly feeding on the leaf while sheltered in a leaf that remained rolled up, characterized by necrotic leaf edges. Pupae were found in hard blackened pupal chambers formed on the leaf edges or petioles. All this is analogous to earlier descriptions of this weevil's biology [7,3,9]. In 2017 (Locations d, f) and in 2018 (Location g), pupation was noted at the end of April and the beginning of May, respectively, while for both France and Germany it is described as generally occurring at the end of May.

The authors will further investigate the distribution, host plant specificity and phenology of *A. spilotus*, and to this end, would greatly appreciate receiving information regarding further records of this species in Belgium.

Acknowledgements

The authors would like to thank Dr. Pol Limbourg of the Royal Belgian Institute of Natural Sciences for providing his observations from Rochefort.

References

- [1] DELBOL M. (2013). Catalogue des Curculionoidea de Belgique (Coleoptera : Polyphaga). *Belgian Journal of Entomology* 13: 1–95.
- [2] BANGELS E., DE SCHAETZEN C., HAYEN G., PATERNOTTE E. & GOBIN B. (2008). The importance of arthropod pests in Belgian pome fruit orchards. *Communications in Agricultural and Applied Biological Sciences* 73 (3): 583–588.
- [3] PUSSARD R. (1930). Les Anthonomes du Poirier dans la vallée du Rhône. *Revue de pathologie végétale et d'entomologie agricole de France* 17 (4): 64–173.
- [4] DIECKMANN L. (1968). Revision der westpaläarktischen Anthonomini. *Beiträge zur Entomologie* 17: 377–564. https://doi.org/10.21248/contrib.entomol.19.3-6.679-682
- [5] BALACHOWSKY A. & MESNIL L. (1935). Les Insectes nuisibles aux plantes cultivées: leurs moeurs, leur destruction. Traité d'Entomologie agricole concernant la France, la Corse, l'Afrique du Nord et les Régions limitrophes, Volume 2. Imprimerie Busson, Paris.
- [6] BOVEY R. & BAGGIOLINI M. (1972). La défense des plantes cultivées: traité pratique de phytopathologie et de zoologie agricole. Payot, Lausanne.
- [7] RHEINHEIMER J. & HASSLER M. (2010). Die Rüsselkäfer Baden-Württembergs. LUBW, Karlsruhe.
- [8] MORRIS M.G., MENDEL H., BARCLAY R.G., BOOTH R.G., CANNON M. F. L., CONROY C. E., CSOKAY L.K., FISHER C., FOUNTAIN M.T. & JAY C.N. (2017). *Anthonomus spilotus* Redtenbacher,

1847 (Curculionidae) new to Britain, a pest in pear orchards in Southern England. *The Coleopterist* 26 (2): 117–122.

- [9] BONNEMAISON L. (1961). *Les ennemis animaux des plantes cultivées et des forêts II*. Éditions Sep, Paris.
- [10] HOFFMANN A. (1954). Faune de France. 59 Coléoptères Curculionides (deuxième partie). Lechevalier, Paris.
- [11] CALDARA R. (2013). Curculionidae: Curculioninae. *In*: LÖBL I. & SMETANA A. (eds) *Catalogue of Palaearctic Coleoptera 8 Curculionoidea II*: 51–172. BRILL, Leiden-Boston.
- [12] BIOFIS (2011–2015). Biofis All Specimen Thesaurus. [Online]. Available from http://biofisdb.supagro.inra.fr/ [accessed 18 December 2018].
- [13] HEIJERMAN T. (1991). Naamlijst van de snuitkevers van Nederland en het omliggende gebied (Curculionoidea: Curculionidae, Apionidae, Attelabidae, Urodontidae, Anthribidae en Nemonychidae). Nederlandse Faunistische Mededelingen 5: 19–46.
- [14] SMRECZYNSKI S. (1972). *Klucze do oznaczania owadów Polski 98d: Curculionidae*. Państwowe Wydawnictwo Naukowe, Warsaw.
- [15] MAZUR M. (2002). The distribution and ecology of weevils (Coleoptera: Nemonychidae, Attelabidae, Apionidae, Curculionidae) in western Ukraine. *Acta Zoologica Cracoviensia* 45 (3): 213–244.
- [16] BENEDIKT S. & STREJČEK J. (2005). Curculionoidea (nosatci). In: FARKAC J., KRAL D. & ŠKORPIK M. (eds) Red list of threatened species in the Czech Republic Invertebrates: 545–555. Agentura ochrany přírody a krajiny ČR, Prague.
- [17] DINA (2016). *Entomological collections*. Available from https://www.dina-web.net/naturary/faces/start.xhtml [accessed 18 December 2018].
- [18] CRUAUD A., JABBOUR-ZAHAB G., GENSON R., CRUAUD C., COULOUX A., KJELLBERG F., VAN NOORT S. & RASPLUS J.Y. (2010). Laying the foundations for a new classification of Agaonidae (Hymenoptera: Chalcidoidea), a multilocus phylogenetic approach. *Cladistics* 26: 359–387. https://doi.org/10.1111/j.1096-0031.2009.00291.x
- [19] GERMAIN J.F., CHATOT C., MEUSNIER I., ARTIGE E., RASPLUS J.Y. & CRUAUD A. (2013). Molecular identification of *Epitrix* potato flea beetles (Coleoptera: Chrysomelidae) in Europe and North America. *Bulletin of Entomological Research* 103 (3): 354–362. https://doi.org/10.1017/S000748531200079X
- [20] IVANOVA N.V., ZEMLAK T.S., HANNER R.H.& HEBERT P.D.N. (2007). Universal primer cocktails for fish DNA barcoding. *Molecular Ecology Notes* 7 (4): 544–548. https://doi.org/10.1111/j.1471-8286.2007.01748.x
- [21] HALL T.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows95/98/NT. *Nucleic Acids Symposium Series* 41: 95–98.
- [22] HENDRICH L., MORINIÈRE J., HASZPRUNAR G., HEBERT P.D.N., HAUSMANN A., KÖHLER F. & BALKE M. (2015). A comprehensive DNA barcode database for Central European beetles with a focus on Germany: Adding more than 3500 identified species to BOLD. *Molecular Ecology Resources* 15 (4): 795–818. https://doi.org/10.1111/1755-0998.12354

Manuscript received: 29 March 2018 Manuscript accepted: 2 January 2019 Published on: 16 April 2019 Branch editor: Guy Smagghe