
Supplementary File A: Derivation of the Price equation

The Price equation, originally developed by George R. Price in 1970, can be used to
describe trait change from an ancestral population to a descendant population by parti-
tioning change into a component that gives the change due to differential survival and
reproduction which is used to represent natural selection and a component that gives the
change due to transmission bias (i.e. deviations between the parents and offspring due
to imperfect transmission; Frank 2012). The latter component describes change due to
mutation or recombination, but could also be due to plasticity responses if the offspring
experience a different environment compared with the parental population. Here I give
a simple derivation of the basic Price equation modified from Okasha (2006). Consider
a closed asexually reproducing parental population consisting of N entities, indexed by
i ∈ {1, . . . , N}. The entities (e.g. group, individuals, genotypes, etc.), no matter what they
are, vary with respect to a measurable phenotypic character z. Denote with zi (resp. wi)
the average character value (resp. the absolute fitness defined as total number of offspring)
of entity i, and with z̄ = 1

N

∑N
i=1 zi (resp. w̄ = 1

N

∑N
i=1 wi) the population average for

character z (resp. fitness). The relative fitness of entity i is calculated as ωi = wi/w̄ and
is the contribution of a parent to the descendant population. Now consider the offspring
population which comprises all the offspring of the N entities of the parental population.
Denote with z′i the average character value for the offspring of entity i. The average value
for z in the offspring population then equals z̄o = 1

N

∑N
i=1

wi

w̄
z′i, which is the weighted av-

erage of all the mean trait values of the offspring. The observed trait change between the
parental and offspring population can then be calculated as:

∆z̄ = z̄o − z̄ =
1

N

N∑
i=1

wi

w̄
z′i −

1

N

N∑
i=1

zi.

Multiplying both sides by w̄, the average absolute fitness, gives:

w̄∆z̄ = w̄(z̄o − z̄) =
1

N

N∑
i=1

wiz
′
i −

1

N

N∑
i=1

w̄zi. (A.1)

If transmission of character z between parents and offspring is perfect, then z′i = zi. How-
ever, if transmission is imperfect then ∆zi = z′i − zi measures the transmission bias of
entity i. Using this equality in equation (A.1) to substitute z′i and rearranging terms gives:

w̄∆z̄ =
1

N

N∑
i=1

wizi +
1

N

N∑
i=1

wi∆zi −
1

N

N∑
i=1

w̄zi

=
1

N

N∑
i=1

zi(wi − w̄) +
1

N

N∑
i=1

wi∆zi

(A.2)

Dividing both sides by w̄ and using standard statistical definitions of covariance and ex-
pectation, we can reformulate the last line in eqn (A.2) in the usual form of the Price
equation:

∆z̄ = cov(ω, z) + Ew(∆z) (A.3)
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The first term in the right hand side of eqn (A.3) is the covariance between character
value zi and relative fitness and reflects the selection differential component (Price 1970;
Frank 1995, 2012). The second term is a fitness-weighted average of the transmission bias.
Note that the main assumption of the Price equation is the focus in constructing categories
for the parent individuals, and then connects all offspring in the next generation to their
ancestors through this categorisation (Lynch & Walsh 1998; Frank 2012).

Okasha (2006) derived a different decomposition of the Price equation by removing rela-
tive fitness (ω) from the second term on the right hand side of eqn (A.3) using Ew[∆z] =
E[∆z] + cov(ω,∆z). Substituting the latter into eqn (A.3) gives:

∆z̄ = cov(ω, z′) + E[∆z] (A.4)

In equation (A.4) the first term in the right hand side now only captures fitness and
represents the total effect of natural selection (Okasha 2006). Equation (A.4) only holds
if both terms interact independently and additively from one another. If this, however,
does not hold, the Price equation can be reformulated as follows:

∆z̄ = cov(ω, z′) + cov(ω,∆z) + E[∆z]. (A.5)

In eqn (A.5) cov(ω, z′) represents fitness differences only, E[∆z] represents transmission
bias only, and cov(ω,∆z) combines both (Godfrey-Smith 2007). If selection does not
interact with transmission, then cov(ω,∆z) can be added to the first term (recovering eqn
(A.4)) or to the last term (recovering eqn (A.3)).

Worked-out example
We next illustrate the Price equation with a hypothetical example of change in mean body
size change for an asexually reproducing Daphnia population depicted in Figure A.1. The
parental population (P) consists of 5 distinct Daphnia genotypes each corresponding to a
specific body size value. Each genotype contributes a certain amount of offspring to the
next generation and the average body size of the offspring might slightly deviate from the
parent due to mutations or environmental effects. In this example, the mean body size
in the parental population equals the average across the 5 genotypes, i.e. z̄ = 2.68. The
relative fitness of each genotype is calculated as its number of offspring divided by the av-
erage number of offspring among all genotypes (i.e. w̄ = 6.8). For example, for the orange
genotype ωorange = 6/6.8 ≈ 0.88. We use the relative fitness and the offspring’s average
trait value of each genotype to calculate the mean body size in the offspring population,
z̄o = 1

N

∑N
i=1

wi

w̄
z′i = 2.86. Thus the observed change in mean body size in this hypothetical

Daphnia population equals ∆z̄ = 0.18. We next use the Price equation (A.3) to calculate
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the selection differential component and transmission bias, i.e.

1

N

N∑
i=1

zi

(wi

w̄
− 1
)

=
1

5

(
2.5
( 6

6.8
− 1
)

+ 2.4
( 4

6.8
− 1
)

+ 2.9
( 8

6.8
− 1
)

+ 2.6
( 6

6.8
− 1
)

+ 3.0
( 10

6.8
− 1
))

= 0.07

1

N

N∑
i=1

wi

w̄
(z′i − zi) =

1

5

( 6

6.8

(
2.8− 2.5

)
+

4

6.8

(
2.4− 2.4

)
+

6

6.8

(
2.65− 2.6

)
+

10

6.8

(
3.1− 3.0

)
+

8

6.8

(
3.0− 2.9

))
= 0.11

Figure A.1: Hypothetical example of change in mean body size for an asexually reproduc-

ing Daphnia population consisting of 5 distinct genotypes (indicated by orange, brown,

green, blue and purple colour) to illustrate the use of the Price equation. P is the parental

population, and O the Offspring population. The numbers attached to the individuals re-

flect the mean phenotypic body size of that genotype. The numbers within the individuals

in the offspring population reflect the amount of offspring that genotype produced in the

offspring population.
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