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Abstract. Climate change and resource exploitation in the Southern Ocean are important anthropogenic 
pressures on Antarctic food webs. Understanding the eco-functional roles of Antarctic communities is 
essential for ecosystem management and conservation. Amphipods are among the most dominant and 
ecologically important benthic taxa in the Southern Ocean. The amphipod genus Charcotia is part of the 
scavenger guild playing a dominant role in nutrient recycling. To study the trophic habits of two sister 
species C. amundseni and C. obesa, stable isotope ratios of carbon and nitrogen were measured along 
geographical and bathymetrical gradients. Charcotia obesa belongs to the fourth and C. amundseni to 
the fi fth trophic level, based on signifi cant differences in δ15N values. Both benthic and pelagic primary 
producers dominate the diet in both species as derived from their low δ13C values. Charcotia obesa, the 
species with the narrowest depth range of the two studied species, did not show a depth-related pattern 
in isotopic ratios. An increasing geographic gradient of both δ15N and δ13C values was observed for 
C. obesa, ranging from the northern most tip of the Western Antarctic Peninsula to the southwestern 
most part in the Bellingshausen Sea. This might be linked to nutrient rich glacial meltwater in the 
latter part of the Southern Ocean. Nitrogen stable isotope ratios of C. amundseni showed a signifi cant 
difference between Crown Bay and the other locations; this might be explained by the close location 
of the Filchner Area to nutrient rich upwelling in the Weddell Sea Gyre. Our study provides evidence 
for niche differentiation between two closely related amphipod species. Incorporation of additional 
samples from other locations and depth ranges in combination with isotope analysis and DNA-based 
prey identifi cation might clarify the trophic position of benthic amphipods.
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Introduction
The Southern Ocean (SO) harbours a huge diversity of pelagic and benthic organisms (David & Griffi ths 
2010; Saucède 2015). The long geographic history and isolation of the SO has led to in situ evolution 
of its marine fauna, with adaptations to the cold environment and high levels of endemism (Poulin 
et al. 2002; Clarke 2008). The Antarctic marine fauna is experiencing increasing anthropogenic pressure 
from the exploitation of marine resources and climate change (Harley et al. 2006; Hoegh-Guldberg & 
Bruno 2010; Constable et al. 2014). In order to conserve the unique Antarctic biota, it is important to 
understand how biodiversity affects ecosystem functioning.

One of the most dominant groups within the SO benthic communities are the Amphipoda (Crustacea, 
Peracarida), which show a broad variation in trophic diversity, habitat, lifestyle and size (De Broyer & 
Jazdzewski 1993, 1996; Dauby et al. 2001; De Broyer & Jażdżewska 2014). The superfamily 
Lysianassoidea is one of the most abundant amphipod taxa in the SO as part of the Antarctic scavenger 
guild (De Broyer et al. 2004; De Broyer & Jażdżewska 2014). Gammaridean amphipods, because 
of their abundance, play an important role in the energy fl uxes of the Antarctic ecosystem, both as 
scavengers feeding on organic matter and as prey for numerous other organisms (Olaso et al. 2000; 
Cherel et al. 2008; Panasiuk et al. 2020). Previous studies found that many species within the Antarctic 
scavenger guild primarily rely on multiple feeding types ranging from suspension feeding to deposit 
feeding and revert to scavenging, or as far as true necrophagy, when food supply is low (Dauby et al. 
2001; De Broyer et al. 2004; Smale et al. 2007). Many of the amphipod species within the guild have a 
wide dietary spectrum, thus potentially having high trophic plasticity. However, despite their relevance 
in the Antarctic marine food web, their eco-functional roles remain poorly understood.

Integrating diversity within trophic levels (horizontal diversity, i.e., taxonomic richness (Ives et al. 
2005)) and between trophic levels (vertical diversity, i.e., food chain length and omnivory (Borer et al. 
2005)) is one approach to understand the trophic spectra of an ecosystem (Duffy et al. 2007). Above the 
level of true herbivory (i.e., predators, scavengers), food webs are referred to as tangled with omnivores 
who tend to feed opportunistically, yet display specifi city in their trophic niches (Thompson et al. 2007; 
Rakusa-Suszczewski et al. 2010; Chikaraishi et al. 2014). Key to understanding the functional diversity 
and stability of Antarctic food webs, and the role and position of the scavenger guild, is to unravel the 
various bottom-up supplies in these tangled food webs (Bruno & O’Connor 2005; Chikaraishi et al. 
2014).

Stable isotope (SI) analysis is frequently used to investigate the long-term feeding ecology of organisms 
worldwide, including in Antarctic food webs (Wada et al. 1987; Nyssen et al. 2005; Stowasser et al. 
2012; Guerreiro et al. 2015; Michel et al. 2019). There is a close relationship between the stable isotope 
ratios assimilated in an organism and its diet (DeNiro & Epstein 1978, 1981). Since primary food 
sources (i.e., phytoplankton, phytobenthos, and sea ice algae) may vary in stable isotope composition 
(Wing et al. 2018; Zenteno et al. 2019), stable isotopes of carbon (13C:12C; δ13C) are used to determine 
the source of primary carbon in food webs. Stable isotope ratios of nitrogen (15N:14N; δ15N) are generally 
measured to determine nitrogen sources and to assess the trophic position of organisms within the food 
web (Post 2002). Due to fractionation of isotopes, consumers are generally enriched in 15N relative to 
their diet, resulting in a sharp increase of δ15N values with each trophic level (DeNiro & Epstein 1981; 
Nienstedt & Poehling 2004). Combining C and N isotope ratios allows to compare the isotopic niche 
(i.e., a proxy of trophic niche) of different species (Newsome et al. 2007; Jackson et al. 2011).

Our aim was to elucidate the trophic niche of Charcotia obesa Chevreux, 1906 and C. amundseni 
d’Udekem d’Acoz, Schön & Robert, 2018 (Crustacea, Amphipoda, Lysianassoidea), previously 
known as Waldeckia obesa (Chevreux, 1906). Charcotia amundseni, one of two sister species, was 
recently described by d’Udekem d’Acoz et al. (2018) based on morphological and molecular data. 
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Charcotia obesa occurs in a depth range from 0–150 m (with decreasing occurrences below 120 m), 
whereas C. amundseni is present from 120 to 1000 m depth, resulting in a narrow overlap in depth 
distribution. Previous dietary studies on C. obesa and C. amundseni demonstrated a scavenging lifestyle 
and resistance to starvation (Chapelle et al. 1994; Dauby et al. 2001; Janecki & Rakusa-Suszczewski 
2005). Lysianassoid species of the SO vary strongly in their feeding ecology, even between closely 
related species (Havermans et al. 2010; Seefeldt et al. 2018). The morphological differences found 
by d’Udekem d’Acoz et al. (2018) include some minor variations in the appearance of epistome and 
upper lip between both species. Nevertheless, the differences are relatively small and, moreover, the 
morphology of the feeding appendages does not allow to identify the feeding type and trophic niche of 
these species (Dauby et al. 2001; Michel et al. 2020). Hence, we hypothesize that there is no difference 
in isotopic niche between the two species. Additionally, we expect spatial variation within each of the 
two amphipod species in isotopic ratios among sampling stations.

Material and methods
Sample collection

Specimens from the genus Charcotia were obtained from collections curated at various scientifi c 
institutes (viz. the University of Lodz, Poland; Alfred Wegener Institute, Bremerhaven, Germany; 
Université Libre de Bruxelles, Brussels, Belgium; Muséum national d’Histoire naturelle, Paris, France 
and the Royal Belgian Institute of Natural Sciences, Brussels, Belgium). Specimens were collected from 
various locations and depths in the SO during several scientifi c expeditions (Table 1). Amphipods were 
caught using epibenthic sledge or baited traps, sorted, identifi ed and preserved in precooled molecular 
grade ethanol (96–99%) at -20°C. Samples originated from four geographic areas (Fig. 1): the Weddell 
Sea near the Filchner Area, the West Antarctic Peninsula (WAP), Queen Maud Land and the Adélie 
Coast. Charcotia obesa, was sampled in nine locations, fi ve off the north-west shelf of the Antarctic 

Fig. 1 – Sampling locations of Charcotia obesa (circles) and C. amundseni (squares) as well as one 
sampling location where both species were sampled (triangle). The map was made in R using the 
CCAMLRGIS package (ver. 4.2.1).
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Peninsula (AP) (South Shetland Island (SSI); Foyn Harbor (FH); Palmer Island (PAL); Andvord (AND); 
Berthelot Islands (BI)), one on the north-east shelf of the AP (south of Joinville Island (JOI); later 
excluded as outlier, see below), one on the south-east coast (Dumont d’Urville Sea (URV)) and one near 
Queen Maud Land in the north-east (Breid Bay (BB)). Samples in the north-west are subcategorized as 
one location in the north (SSI), three central (FH, PAL, AND) and one in the south (BI), respectively. 
Charcotia amundseni was collected at two geographical locations, one in the Weddell Sea (Filchner 
Area (FIL)) and two off the coast of Queen Maud Land (Breid Bay (BB); Crown Bay (CB)). The fi nal 
dataset contained 205 C. obesa individuals and 41 C. amundseni individuals, based on morphological 
identifi cation and confi rmation with mitochondrial DNA COI sequences.

Stable isotope analysis
Two to four pleopods (depending on size) including muscles were dissected from each Charcotia 
specimen and air-dried for at least 72 h. By using the same tissue (i.e., mostly soft tissue muscles) for all 
samples, we exclude potential bias and underestimations due to the analysis of different tissue (Søreide & 
Nygård 2012). The protocol allows to conserve collection specimens for taxonomic purpose and future 
studies. Pleopods were weighted in tin cups; dry mass ranged from 0.1 to 0.4 mg. Samples were analysed 
at the University of Liège, using an Isotope Ratio Mass Spectrometer (IRMS) (precisION, Elementar) 
coupled to an elemental analyser (vario MICRO, Elementar). Delta (δ) notations of carbon (δ¹³C) and 
nitrogen (δ15N) were used to express isotope ratios, which are calculated here as parts per thousand (‰) 
(Coplen 2011). We used blank tin cups, secondary analytical material (glycine and European sea bass 
Dicentrarchus labrax reference material) and certifi ed material from the International Atomic Energy 
Agency (IAEA, Vienna, Austria), IAEA C-6 (sucrose; δ¹³C = -10.8 ± 0.5 ‰) and IAEA-N1 (ammonium 
sulphate; δ15N = 0.4 ± 0.2 ‰). The isotope ratios are expressed as mean values ± SD for each species and 
calculated according to sampling station and depth.

Data analysis
A correction was applied to account for differences in SI values of primary producers (i.e., isotopic 
baseline) at different geographical locations, when comparing SI data between the two species. This 
correction was taken from (Le Bourg et al. 2021) and applied to remove the impact of isotopic baseline 
variability among localities (Equation 1): corXij = Xij - (Xj - X), where X is the variable (i.e., δ¹³C), i denotes 
the individual and j the sampling station. Xij describes a value belonging to individual i at station j, X is 
the overall mean of all values and Xj is the mean value at station j. Accordingly, transformed data are 
displayed as δ13Ccorr and δ15Ncorr. The same formula was used when comparing values from different depth 
ranges to correct again for possible isotopic baseline shift effects. When comparing localities within 
each species, this correction was not needed, since the analysis was done for each species separately.

Isotopic niches and overlaps were determined by calculating Standard Ellipse Areas (SEA) in bivariate 
δ¹³C vs δ15N isotopic spaces, using the SIBER package (ver. 2.1.9; Jackson et al. 2011) in Rstudio 
(ver. 4.1.2, R Core Team 2021) for fi rst comparisons between the two species and between location 
within each species. To quantify and compare isotopic niches, the Total Area (TA) was calculated, 
encompassing the whole isotopic niche. The SEA corrected for small sample size (SEAC) was also 
calculated to measure the core isotopic niche area (± 40% of the data), thus providing an estimate of the 
central tendency, and the Bayesian Standard Ellipse Area (SEAB; based on 2 ∙ 106 iterations, 2 chains, 104 
initial discards and a thinning interval of 10) was also calculated. The SEAB accounts for uncertainty in 
the data (i.e., small and uneven data) using a Bayesian framework and generates posterior distributions 
of the ellipse areas, which enables the estimation of the mode with 95% credible intervals (CI). Plots 
were made using the R package ggplot2 (ver. 3.5.1; Wickham 2016). When assessing differences in SI 
ratios at various depths, recorded sample depths were clustered in increments of 50 m, creating four 
groupings of C. obesa samples at depths of < 50 m (n = 115), 50 to 100 m (n = 29), 100 to 150 m (n = 34) 

Belg. J. Zool. 155: 49–73 (2025)
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and > 150 m (n = 25) (Appendix Table 1S). Charcotia amundseni samples were not considered for such 
analysis as all samples were within 50 m from each other, at a depth range from 230 to 274 m.

To estimate the trophic position (TP) of both species, the tRophic position package (ver. 0.8.0; Quezada-
Romegialli et al. 2018) was used. To establish a baseline, we used collated data on Particulate Organic 
Matter (POM) from an earlier study (St John Glew et al. 2021) and compared the uncorrected data to 
this Antarctic pelagic baseline. TP is noted as the statistical mode with a 95 % Credibility Interval (CI95) 
of posterior estimations.

For statistical analysis, data outliers for both 13Ccorr and 15Ncorr were detected and removed per species using 
the Rosner test; this resulted in the removal of three samples from C. obesa, one outlier of 13Ccorr came 
from the single sample of JOI and two outliers from URV; one of the latter outlier included both, values 
for 13Ccorr and 15Ncorr, while the other was an outlier of 5Ncorr. Normality was tested with the Shapiro-Wilkes’ 
test and homoscedasticity with the Levene’s test. Since parametric assumptions were not met, Mann 
Whitney U tests, Kruskal-Wallis tests and Chi-squared tests were used. Post hoc testing was performed 
with Dunn tests (Bonferroni corrected). A signifi cance level of p-value < 0.05 was used in all tests.

Results
Comparing SI ratios between two Charcotia species

Uncorrected δ13C ranged from -20.3 ‰ to -25.6 ‰ and δ15N varied from 8.2 ‰ to 13.6 ‰ among the 205 
samples of C. obesa. The total dataset of 41 C. amundseni samples resulted in δ13C and δ15N ranging 
from -20.8 ‰ to -24.3 ‰ and from 11.1 ‰ to 15.0 ‰, respectively (Appendix Fig. 1S). Having corrected 
for variation of SI ratios between locations for interspecifi c comparisons C. amundseni displayed a 
signifi cantly higher mean δ15Ncorr of 12.9 ± 0.7 ‰ (min. 10.9–max. 14.4 ‰) compared to the δ15Ncorr of 
C. obesa of 10.7 ± 0.6 ‰ (min. 9.1–max. 12.1 ‰) (Fig. 2; Table 2; (W = 8276, p-value < 0.001)). In contrast, 
δ13Ccorr values for both species were rather similar and not signifi cant (W = 4542, p-value = 0.4143) (Fig. 
2; Tables 2–3). Ellipse-based metrics showed no measurable overlap (< 0.01%) between both Charcotia 
species (Fig. 2; Table 2), with C. amundseni having the largest SEAB (1.0 ‰2; CI 0.7–0.9 ‰2) of the 
two species (Table 6). Finally, using the uncorrected δ15N values from both species, we calculated a 
trophic position of 4.19 (CI95: 3.66–4.97) for C. obesa, and 5.14 (CI95: 4.46–6.17) for C. amundseni 
(Fig. 3). Our trophic position model suggested that this difference was signifi cant, with the probability 
of C. amundseni occupying a higher trophic position being 96.1%.

Comparing SI ratios between geographic locations
This study showed that there were signifi cant differences in SI ratios of carbon and nitrogen at the 
intraspecifi c level for Charcotia obesa (δ13C; χ2 = 154.72, p-value = <0.0001 and δ15N; χ2 = 132.48, 
p-value = < 0.0001) between the sampled regions of the Antarctic continental shelf (Table 3). When 
checking for a possible geographic grouping of locations within C. obesa, individuals belonging to 
the northern group (SSI) had signifi cantly lower δ15N and δ13C values (p-value < 0.001) compared to 
individuals found in the central (PAL, FH & AND) and the southern group (BI) (p-value < 0.001; Table 
5a). Within-group pairwise comparisons of locations around the WAP of both δ15N and δ13C, indicated 
that adjacent stations are non-signifi cant, with the exception of δ15N in the central group, (Table 5b–c) 
and an increasing gradient from north to south of both δ15N and δ13C (Table 4). The only sampling 
station (Dumont d’Urville Sea, URV) in the south-east differed signifi cantly from all other stations in 
both δ15N and δ13C except for Foyn Harbor (FH). Berthelot Islands (BI) had the largest SEAB (1.1 ‰2; 
CI 0.8–1.8 ‰2) followed by AND (0.9 ‰2; CI 0.6–1.4 ‰2) and SSI (0.8 ‰2; CI 0.6–1.2 ‰2) (Table 6). 
Standard ellipse overlap was minimal between all locations (<1 %), except for AND and BI with an 
SEAB overlap of 30.95 % (Figs 4a, 5a; Table 5d).
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Fig. 2 – Standard Ellipse Areas of individual stable isotope values of δ13Ccorr and δ15Ncorr and its isotopic 
niche, of Charcotia obesa (red circles, black ellipse) and C. amundseni (blue triangles, dashed ellipse).

Species n δ13C (‰) δ15N (‰) δ13Ccorr (‰) δ15Ncorr (‰) Overlap
Charcotia obesa 205 -23.7 ± 1.0 10.7 ± 1.2 -23.7 ± 0.4 10.7 ± 0.6

<0.01 %
Charcotia amundseni 41 -23.6 ± 0.6 12.9 ± 0.9 -23.7 ± 0.5 12.9 ± 0.7

TABLE 2

Mean ± SD δ13C and δ15N values calculated for Charcotia obesa and C. amundseni. Corrected values 
(corr) are location adjusted values of δ13C and δ15N for their respective locations. Overlap of isotopic 
niches between the two species, displayed in percentages.

δ13C (‰) δ15N (‰)
Mann Whitney U test W p-value W p-value
Species 4542 0.4143 8276 <0.001
Kruskal-Wallis test df χ2 p-value df χ2 p-value
Locations C. obesa 5 154.72 <0.001 5 132.48 <0.001
Locations C. amundseni 2 20.303 <0.001 2 17.058 <0.001
Chi2 test df χ2 p-value df χ2 p-value
Depths C. obesa 3 15.007 0.002 3 15.552 0.001

TABLE 3

Results of Mann Whitney U tests, Kruskal-Wallis and Chi2 tests assessing the infl uence of species, 
locations and depths on stable isotope values of carbon and nitrogen. Signifi cant p-values (<0.05) are 
indicated in bold.
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Three locations were sampled for C. amundseni (Fig. 4b). An increasing trend in both isotope ratios was 
found from the Filchner Area (FIL) to the two locations in Queen Maud Land (Table 4). δ13C differed 
signifi cantly between specimens from the FIL compared to Crown Bay (CB) (p-value = 0.001) and Breid 
Bay (BB) compared to CB (p-value = 0.001). The same patterns are shown for δ15N with signifi cant 
differences between BB and the FIL (p-value < 0.001) and between the FIL and CB (p-value = 0.006). 
Overall, the location within the Weddell Sea (FIL) and two locations of Queen Maud Land (CB and 
BB) showed signifi cant differences in both δ15N and δ13C (δ13C; χ2 = 20.30, p-value = <0.0001 and δ15N; 
χ2 = 17.06, p-value = <0.0001) (Table 3), whereas the variation between the two adjacent sites is much 

Fig. 3 – Trophic positions calculated for Charcotia obesa (red) and Charcotia amundseni (blue). 
Boxplots show credibility intervals of 50, 75 and 95 %. Black dot denotes the mode of each species’ 
trophic position.

TABLE 4

Sample size (n) and mean ± SD δ13C and δ15N values calculated for Charcotia obesa and C. amundseni; 
values are grouped per sampling location.

Species Locations n δ13C (‰) δ15N (‰)
 Charcotia obesa South Shetland Islands 40 -24.8 ± 0.4 9.5 ± 0.7
 Palmer Station 10 -24.9 ± 0.3 11.6 ± 0.3
 Foyn Harbor 4 -23.3 ± 0.1 12.1 ± 0.6
 Andvord 20 -22.0 ± 0.6 12.2 ± 0.5
 Berthelot Islands 21 -22.2 ± 0.7 12.6 ± 0.6
 Dumont D’Urville Sea 108 -23.9 ± 0.4 10.3 ± 0.6
Charcotia amundseni Breid Bay 5 -24.1 ± 0.2 11.8 ± 0.7
 Crown Bay 17 -23.9 ± 0.2 12.6 ± 0.5
 Filchner Area 19 -23.4 ± 0.7 13.5 ± 0.9
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C. obesa C. amundseni
δ13C δ15N

a North Central South North Central South
North –

Central <0.001 –
South <0.001 0.347 –
North –

Central <0.001 –
South <0.001 0.243 –

b
δ13C δ13C

SSI PAL FH AND BI URV BB CB FIL
SSI – BB –

PAL 1 – CB 0.538 –
FH <0.001 0.003 – FIL 0.001 0.001 –

AND <0.001 <0.001 1 –
BI <0.001 <0.001 1 1 –

URV <0.001 0.001 1 <0.001 <0.001 –

c
δ15N δ15N

SSI PAL FH AND BI URV BB CB FIL
SSI – BB –

PAL <0.001 – CB 0.392 –
FH <0.001 1 – FIL 0.001 0.006 –

AND <0.001 1 1 –
BI <0.001 1 1 1 –

URV 0.002 0.005 0.058 <0.001 <0.001 –

d
Overlap (%) Overlap (%)

SSI PAL FH AND BI URV BB CB FIL
SSI – BB –

PAL <0.001 – CB 13.05 –
FH 0.000 0.000 – FIL <0.001 3.52 –

AND 0.000 0.000 0.000 –
BI 0.000 0.000 0.000 30.95 –

URV 0.000 0.000 0.000 0.000 0.000 –

TABLE 5

Results of pair-wise Dunn tests with Bonferroni corrections assessing the infl uence of location on stable 
isotope values. (a) pair-wise tests between the North, Central and South clusters of locations. (b) pair-
wise tests between locations for δ13C for both Charcotia species. (c) pair-wise tests between locations 
for δ15N for both Charcotia species. Signifi cant p-values (<0.05) are indicated in bold. (d) overlap of 
isotopic niches between geographical locations, displayed in percentages.
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lower (Table 5b–c). CB had a niche overlap with BB of 13.05 % and a minor overlap with the FIL
(3.52 %), whereas BB and FIL had no overlap (Fig. 5b; Table 5d). Charcotia amundseni individuals 
from the FIL had the largest SEAB (1.7 ‰2; CI 1.1–2.9 ‰2), while the SEAB values of the other two 
locations were much smaller and very similar (BB: 0.3 ‰2; CI 0.1–1.0 ‰2 & CB: 0.3 ‰2; CI 0.2–0.6 ‰2) 
(Table 6).

Depth-dependent SI ratios
Charcotia obesa displayed a large overlap in isotopic niche between depths (Fig. 2S; Table 1S). 
Moreover, values for both δ13Ccorr and δ15Ncorr differed only a few decimal points (Table 2S).

Fig. 4 – Standard Ellipse Areas of individual stable isotope values of δ13C and δ15N for Charcotia obesa (a), 
C. amundseni (b) and their isotopic niches, grouped per location. Locations are indicated by different 
colours; the sample number per location is provided in the legend.

TABLE 6

Isotopic niches areas for each species, as well as for each sampling location of each species. Including 
Total Area (TA), Standard Ellipse Area adjusted for small sample size (SEAC), and Bayesian Standard 
Ellipse Area (SEAB) mode and 95% credible intervals.

n TA SEAC SEAB SEAB 95% CI 
Charcotia obesa 205 6.2 0.8 0.8 0.7–0.9
South Shetland Islands 40 3.0 0.9 0.8 0.6–1.2
Palmer Station 10 0.7 0.4 0.3 0.2–0.6
Foyn Harbor 4 0.2 0.4 0.2 0.1–0.7
Andvord 20 2.8 1.0 0.9 0.6–1.4
Berthelot Islands 21 3.7 1.3 1.1 0.8–1.8
Dumont D’Urville Sea 108 4.1 0.6 0.6 0.5–0.8
Charcotia amundseni 41 5.5 1.1 1.0 0.8–1.4
Breid Bay 5 0.3 0.4 0.3 0.1–1.0
Crown Bay 17 0.9 0.7 0.3 0.2–0.6
Filchner Area 19 5.5 1.9 1.7 1.1–2.9
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Discussion
The isotopic composition of carbon (δ13C) and nitrogen (δ15N) of two Charcotia sister species (C. obesa 
Chevreux, 1906 and C. amundseni d’Udekem d’Acoz, Schön & Robert, 2018) were analysed to compare 
their trophic position in the Antarctic food web. Signifi cant differences in nitrogen isotope ratios were 
found between the two sister species. Based on the high nitrogen values, high trophic levels were 
estimated for both species. Signifi cant differences in both stable isotopes between regions were found 
within each species. An increasing trend in both stable isotopes in C. obesa was found from the north to 
south off the WAP. Signifi cant differences were also observed in C. amundseni from sampling locations 
in the Weddell Sea and Queen Maud Land.

Nitrogen SI ratios and trophic positions
δ15N values for both species were high, corroborating a high position in the trophic web and, probably, 
a necrophagous scavenging behaviour (Dauby et al. 2001; Nygård et al. 2012). Charcotia individuals, 
in past studies showed δ15N values of 11.6 ± 0.3 ‰ in the eastern Weddell Sea (Nyssen et al. 2002) and 
lower values along the Antarctic Peninsula (7.3 ± 0.7 ‰) (Nyssen et al. 2005). Michel et al. (2019) have 
reported δ15N values of 9.1 ± 1.6 ‰ of C. obesa individuals in East Antarctica (Adélie Land), which differs 
slightly with the isotopic ratio of C. obesa in our study (10.3 ± 0.6 ‰). δ15N values in the previous studies 
match the range found in our study (min. 7.3–max. 12.2 ‰). Other scavenging amphipods investigated 
by Zenteno et al. (2019) had δ15N values ranging from 4.4 ± 0.6 ‰ to 5.9 ± 0.3 ‰, with the highest δ15N 
value (6.6 ± 0.4 ‰) for a carnivore predatory amphipod. One species included in the latter study was 
Cheirimedon femoratus Pfeffer, 1888 (Crustacea, Amphipoda, Lysianassoidea), which is considered an 
omnivorous scavenger from the same scavenging guild as Charcotia (De Broyer et al. 2004; Seefeldt 
et al. 2017, 2018). Cheirimedon femoratus occupies a broad trophic range within the guild, with a δ15N 
value of 4.4 ± 0.6 ‰ (Seefeldt et al. 2017; Zenteno et al. 2019). This species is notably smaller than 
Charcotia and has a different mandible morphology, feeding on carcasses (when available) and algae 
during austral summer (Núñez-Pons et al. 2012; Seefeldt et al. 2017). Charcotia feeds on carcasses 
from outside to inside, while smaller species obtain access either through orifi ces in the body or from 
openings created by larger scavengers, such as Charcotia (Seefeldt et al. 2017). Charcotia amundseni 
and C. obesa displayed different δ15Ncorr values, suggesting a different trophic position (TP; Post 2002). 
Charcotia amundseni (TP of 5.14) presumably belonged to the fi fth trophic level and C. obesa, with 

Fig. 5 – Standard Ellipse Areas of stable isotope values of geographical locations for both Charcotia 
obesa (a, red) and Charcotia amundseni (b, blue). Black dots denote the Bayesian estimate of SEAB 
while yellow triangles indicate the computed SEAC.
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an estimated TP of 4.19, to the fourth trophic level. A fi rst explanation could be that, although the two 
species are opportunistic scavengers C. amundseni which is found deeper feeds on carcasses occupying 
a higher trophic position than C. obesa. Charcotia are feeding episodically and are often found on large 
dead animals at depth (Jażdżewska 2009; Bolstad et al. 2023). We hypothesize that in shallow areas, 
the diversity of dead prey is larger and belongs to more diverse trophic positions than in deeper areas. 
Deep-sea carcasses are typically dominated by larger organic falls of organisms from higher trophic 
levels (Bolstad et al. 2023), which, consequently, could explain the lower trophic position of C. obesa 
compared to C. amundseni. The lack of any overlap in the trophic niche based in the SEA (Fig. 2;
Table 2) further supports the different trophic position of both species. Anyway, our modelled results 
show that the two species occupy very high trophic positions, much higher than observed by Michel 
et al. (2019) (C. obesa, TP: 2.4) for example. This difference is huge in terms of energy fl ow and could 
indicate that C. obesa has higher feeding plasticity than initially thought. In East Antarctic C. obesa 
was caught at shallow depths (20 m), preying likely on dead invertebrates occupying a lower trophic 
position. Our Charcotia species are at a higher trophic position than smaller scavenging amphipods 
investigated by Zenteno et al. (2019), showing that the scavengers guild does not necessarily depend 
on the same prey and comprises organisms occupying different trophic positions in the Antarctic food 
web (Smale et al. 2007). Niche partitioning might allow scavenging amphipods to co-exist in the same 
habitat.

Differences in trophic position and thus in realized ecological niche support the coexistence of 
morphologically similar species and contribute to the diversifi cation of sister species (Klarner et al. 
2013; Bessa et al. 2014). Nevertheless, a second hypothesis could be that both species display eco-
physiological differences. Isotopic fractionation is associated with starvation, leading generally to an 
increase of δ15N values (Doi et al. 2017). Impacts of diet quality and starvation on nitrogen isotopic 
fractionation have been reported in other arthropods (Haubert et al. 2005) and crustaceans (Fantle 
et al. 1999; Trochine et al. 2019). Starvation has been reported for Charcotia (Chapelle et al. 1994), 
as an opportunistic omnivorous scavenger feeding episodically. The higher δ15N values observed in 
C. amundseni as opposed to C. obesa, might indicate that C. amundseni, living in deeper water, cope 
with starvation more frequently and for more elongated periods of time than the shallow water C. obesa 
individuals (Scheer et al. 2022). Additionally, recent research found that differences in gut microbiome 
composition and specifi c symbiotic relationships aid deep sea invertebrates to cope with surviving in 
these unusual environments. Microbiome diversity leads to variable host physiology, behaviour and 
ecology (Osman & Weinnig 2021) and provides an alternative explanation for the trophic differences 
found in this study.

Carbon SI ratios and food sources
No signifi cant difference was found between the mean δ13Ccorr values of both species (Table 3). δ13C values 
are generally indicative of the primary food source of an organism (France 1995; Michener & Kaufman 
2007) with more negative δ13C values (± -25 ‰ to ± -30 ‰) being characteristic of pelagic primary 
producers (Espinasse et al. 2019; Michel et al. 2019), intermediate δ13C values (± -25 ‰ to ± -10 ‰) of 
mainly benthic primary producers and less negative δ13C values (± -20 ‰ to ± -8 ‰) being characteristic 
of sea ice microbial communities (Gillies et al. 2012a, 2013; Michel et al. 2019). Charcotia obesa had 
the largest range in δ13C, which might be attributed to the larger sample size, but could also refl ect a wide 
diversity of primary food sources (both pelagic and benthic) and larger diversity in dead organic matter 
in the shallower depth range in which they occur. The range of δ13C values of C. amundseni falls within 
the predetermined range of both pelagic and benthic primary producers as primary food source, which is 
in agreement with organisms feeding on carcasses of pelagic animals (Gillies et al. 2012b; Michel et al. 
2019). A range of 3.5 ‰ in δ13C values supports their scavenging foraging feeding behaviour (Amsler 
et al. 2014; Aumack et al. 2017). The study by Zenteno et al. (2019) found δ13C values for scavenging 
amphipods ranging from -14.7 ± 0.6 ‰ to -21.5 ± 0.6 ‰, aligning with our results. The availability of 
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multiple primary food sources is one of the key features that enables the stability of Antarctic food webs 
(Zenteno et al. 2019).

Effect of location
The primary food sources in Antarctic food webs (phytoplankton, macroalgae, and detrital matter) are 
highly dependent on sea-ice coverage, and therefore also shaped by location and seasonality (Norkko 
et al. 2007). While we could not study seasonality as we used an opportunistic approach to analyse 
existing samples, our results confi rm spatial variation, as there is limited overlap between sites on the 
δ13C -axis for each of the two species (Fig. 4a–b). When investigating the trophic ecology within each 
species, carbon isotope ratios of C. obesa individuals showed signifi cant geographical differences 
between localities off the Antarctic continent (Tables 3, 5b–c). Lowest mean δ13C values (-24.8 ‰) 
were estimated around the SSI while the highest mean δ13C value (-22.0 ‰) was measured in Andvord 
(AND) (Table 4). Interestingly, Dumont d’Urville Sea (the only south-east sampling location) differed 
signifi cantly in the mean δ13C value from all other locations except Foyn Harbor (with the lowest sample 
size per location), and showed no overlap in isotopic niche (Figs 4a, 5a; Table 5d). The only locations 
with an overlap of 30.95% were the Andvord and Berthelot Islands, which are located relatively close 
in the WAP. The biogeochemistry of the Southern Ocean differs regionally, which affects primary 
production (Henley et al. 2020; Fraser et al. 2023) and is refl ected in our isotope data. For C. amundseni, 
samples from three locations were included in the current study and we found a signifi cant difference 
between the Weddell Sea location (Filcher Area (FIL) and both locations in Queen Maud Land (Breid 
Bay (BB); Crown Bay (CB) (Table 5b). The carbon stable isotope ratio is highly infl uenced by sea 
surface temperature and CO2 availability for photosynthesis (Lara et al. 2010; Espinasse et al. 2019). 
Additionally, primary production is negatively correlated with sea ice coverage, leading to an increase 
of detritus consumption by benthic consumers, which is refl ected in higher δ13C values (Norkko et al. 
2007). δ15N values, on the other hand, are strongly infl uenced by sea ice dynamics and upwelling, since 
the availability of nitrogen (in the form of nitrate) is the limiting factor and will cause an increase in 
stable isotope values (Difi ore et al. 2010; Zenteno et al. 2019). The lowest mean value of δ15N (9.5 ‰) in 
C. obesa was estimated in the South Shetland Islands (SSI), while the highest mean value (12.6 ‰) was 
found in Berthelot Islands (BI), showing an increasing gradient of 3 ‰ from the northernmost sampling 
location around the WAP to the most southwest sampling location close to the Bellingshausen Sea. A 
similar pattern was found by Brault et al. (2018) in zooplankton species from the WAP to the Ross Sea. 
The authors attributed this pattern to the abundant polynyas and higher productivity due to glacial inputs 
of iron in the Amundsen and Ross Sea, leading to higher δ15N values phytoplankton (Brault et al. 2018). 
Similar meltwater input has been reported in the Bellingshausen Sea, which could explain the observed 
pattern of increasing δ15N in our study (Holland et al. 2010; Sheehan et al. 2023). Signifi cant differences 
in nitrogen stable isotopes of C. amundseni were found between FIL and both other locations (CB and 
BB), and confi rmed by the lack of or minimal overlap in the SEA. The Filchner Area is located at the 
east side of the Weddell Sea, adjacent to the Weddell Gyre which contributes to upwelling of nutrient 
rich deep-sea water. The latter might be linked to the higher δ15N values (Gordon et al. 2001; Nicholls 
et al. 2009; Vernet et al. 2019).

Depth effect
Charcotia obesa samples originated from four depth ranges along the shelf of the Antarctic continent 
(see Appendix Fig. 2S, Tables 1S and 2S). Distance to the continent and consequently also depth may 
strongly infl uence both isotopic ratios. Usually, coastal environments show higher δ13C and δ15N values, 
which decrease with distance to the shore (Lara et al. 2010; Zhang et al. 2014). The decrease in the 
carbon isotope ratio is generally steeper than for the nitrogen isotope (El-Sabaawi et al. 2012; St John 
Glew et al. 2021). However, in our data, this decrease is not very pronounced and the four depth ranges 
show complete overlap in the SEA analysis (Appendix Fig. 2S).

Belg. J. Zool. 155: 49–73 (2025)



63

Suggestions for future studies
Our study illustrates that a limited number of geographical stations can produce valuable novel insights. 
Increasing the sampling size to at least fi ve individuals equally distributed per location and a more 
structured distribution of locations and depths around the Antarctic continent makes the statistical 
analyses across variables more robust. Isotopic measurements of POM during sampling would also be 
advisable to provide baseline values for the species of interest (Michel et al. 2016). Sampling outside 
of the Austral summer is recommended, although challenging if not next to impossible. Increasing the 
temporal resolution and year-round sampling could further improve the accuracy of observed patterns 
and also unravel seasonal patterns (Kolts et al. 2013; de Lima et al. 2022).

Stable isotopes are a powerful tool to estimate trophic niches of organisms but may lack resolution 
especially when spatiotemporal variation in the ecosystem is high. Including dietary studies by sampling 
the stomach content might provide a more detailed, albeit snapshot, insight in the diet and starvation 
periods. Metabarcoding of the stomach content has proven to be a useful tool at a higher resolution than 
visual dietary assessments (Maes et al. 2022). Therefore, a combination of trophic markers, molecular 
and morphological methods will result in information at the highest resolution and predict a species’ 
trophic niche most accurately (Gerringer et al. 2017).

Conclusion
Based on the data presented here, we observe that even closely related sister species, which occupy 
similar habitats and have similar feeding strategies differentiate their isotopic niche. The plasticity 
in feeding habits of scavenging amphipods might have important implications in the face of climate 
change. Polar regions are one of the fastest warming regions in the world, more specifi cally the Antarctic 
Peninsula is affected to a great extent (Wallis et al. 2023; Engel et al. 2024). Decreasing sea ice cover 
might alter the effective niche of certain species and reduce suitable habitat (Parkinson & Cavalieri 
2012). Trophic plasticity of Antarctic benthic organisms could be a strategy to ensure survival, however 
potentially leading to different responses of each group (Michel et al. 2016). Therefore, future focus 
on trophodynamics is essential in terms of insights in ecosystem functioning and conservation of the 
pristine Antarctic environment.
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Appendix
Supplementary Tables and Figures.

Species Depth n δ13C (‰) δ15N (‰) δ13Ccorr (‰) δ15Ncorr (‰)
C. obesa < 50 m 115 -23.2 ± 1.0 11.2 ± 1.1 -23.7 ± 0.5 10.7 ± 0.6
 50–100 m 29 -24.4 ± 0.5 9.7 ± 0.9 -24.0 ± 0.3 10.3 ± 0.6
 100–150 m 34 -24.1 ± 0.2 10.3 ± 0.6 -23.8 ± 0.3 10.8 ± 0.6
 > 150 m 25 -24.9 ± 0.3 9.8 ± 0.5 -23.8 ± 0.3 10.9 ± 0.5

TABLE 1S

Sample size (n) and mean ± SD δ13C and δ15N values calculated for Charcotia obesa. Corrected values 
(corr) are adjusted for locations. Values are grouped according to sampling depth.

TABLE 2S

Results of pair-wise Dunn tests with Bonferroni corrections assessing the infl uence of depths on 
corrected stable isotope values of carbon and nitrogen for Charcotia obesa. Signifi cant p values (<0.05) 
are indicated in bold.

Species Depths p-value δ13Ccorr (‰) p-value δ15Ncorr (‰)
C. obesa <50 m – 50 to 100 m 0.006 0.011
 <50 m – 100 to 150 m 0.092 1
 <50 m – >150 m 0.339 0.729
 50 to 100 m – 100 to 150 m 1 0.010
 50 to 100 m – >150 m 1 0.002
 100 to 150 m – >150 m 1 1

AERTS D. et al., Niche divergence of Antarctic amphipods
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Fig. 1S – Standard Ellipse Areas of individual uncorrected stable isotope values of δ13C and δ15N and its 
isotopic niche of Charcotia obesa (red circles) and C. amundseni (blue triangles).
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Fig. 2S – Standard Ellipse Areas of individual stable isotope values of δ13Ccorr and δ15Ncorr for Charcotia 
obesa and its isotopic niche, grouped per depth. Different depths are indicated by different colours; the 
sample number per species is also provided.
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